ASIC Design Flow

Himanshu Patel

Space Applications Centre (ISRO)

hnpatel@sac.isro.gov.in

Contents

- Introduction
- ASIC Design Methodologies
 - Full custom
 - Standard Cell
 - Gate Array ASIC
 - Structured ASIC
- ASIC Design Flow
 - Design Entry
 - Functional Verification
 - Synthesis
 - Design For Test (DFT)
 - Place & Route
 - Timing Verification
 - Formal Verification
 - Proto ASIC Test
- Mixed Signal ASIC
- Challenges for Deep Submicron ASIC
- ☐ CASE Study : OBC ASIC

ASIC

- ☐ ASIC stands for Application Specific Integrated Circuits.
- It means an integrated circuit designed for a specific application.
- An application could be a microprocessor, cell phone, modem, router, etc.
- Nowadays, ASIC has a complete system on it, often called as System on a Chip (SOC)

ASIC Design Methodologies

Full-custom design

➤ Each primitive logic function or transistor is manually designed

Standard-cell based design

Standard library cells (NAND,NOR, XOR,FF etc) are used for design

Gate-array based design

Wafers are pre-fabricated with unconnected gate arrays

Structured ASIC

Wafers are pre-fabricated with Standard library cells

Full custom ASIC

- □ Each primitive logic function or transistor is manually designed
- Manually manipulation of each transistor geometry is done, so also called "polygon pushing"
- □ Rarely used today, (except for very high volume products like microprocessor etc)

Advantages:

It gives most optimized design : high speed, low power, small gate count

Disadvantage:

- Long design cycle
- ☐ Higher NRE (Non- Recurring Engineering) cost

Standard Cell based ASIC design

- □ Pre-defined library cells (NAND,NOR,FF,RAM, Hard macro cores etc) are used
- □ Designs are created using schematic capture or synthesis from Hardware Description Languages (HDL)
- □ All mask layers are customized —transistors and interconnect

Standard cell ASIC

Advantages:

- □ Shorter design time compared to full custom style
- "Mega cells" or Hard IP cores (Microprocessor, MAC Memory etc) provided by vendor can be used easily

Disadvantage:

□ Separate fabrication mask is required for each design : High NRE cost compared to gate array

Gate Array ASIC

- □ Wafers are pre-fabricated with unconnected gate arrays (so wafers are common for all design)
- □ Top metallization for connecting transistors is done according to different design at last stage

channeled gate array:

The interconnect uses predefined spaces between rows of base cells

channelless gate array:

Only some (the top few) mask layer are customized

Gate Array ASIC

Advantages:

- Lower NRE cost as same base wafer is pre-fabricated for multiple designs
- Low turn around time

Disadvantage:

- Low layout density,
- less optimized: Low speed, High power consumption
- Suitable only for lower volume products

Structured ASIC

- □ A Structured ASIC falls between an Gate Array and a Standard Cell-based ASIC
- ☐ The design task involves mapping the design into a library of building block cells, and interconnecting them as necessary.
- □ Largely Prefabricated
 - Components are "almost" connected in a variety of predefined configurations
 - Only a few metal layers are needed for fabrication
 - Drastically reduces turnaround time

Structured ASIC

Advantages:

- ☐ Low NRE cost
- ☐ High performance
- Low power consumption
- ☐ Less Complex
 - Fewer layers to fabricate
- Small marketing time
 - Pre-made cell blocks available for placing

Disadvantages:

- □ Lack of adequate design tools
- ☐ Design constrained by pre-fabricated block available in library

Comparison Graph

Digital ASIC Design Flow

1. Front End design:

- Specifications to Gate level netlist generation
- Normally done by customer

2. Back End design:

- From Gate Level netlist to GDS-II generation
- Normally done by vendor or third party designer

3. ASIC Fabrication:

- GDS-II to ASIC chip
- Done by foundry

Front End Design

Specifications

- ☐ The chip functionality is described in "Requirement & Specification Document"
- The targeted speed, power consumption, area are also specified
- System Engineer conveys requirement in plain English to Design team and Verification team
 - Design Team generates RTL code as per specs.
 - Verification team generates Test benches/test cases as per specs

Design Entry

- □ Either by Scematic Capture or through HDLs like VHDL, Verilog etc
- The quality of final chip depends largely on quality of RTL code
- □ There are some design guidelines which should be followed
 - Design should be synchronous
 - Clock gating should be avoided
 - Flip flops should be used instead of latches
 - Proper FSM coding styles (one hot, binary, etc)

Testbench

- ☐ First Test plan is worked out based on which different test cases are identified
- Assertion based testbenchs checks captured output with expected output and writes report

ASI Back gn Flow

Himanshu Patel

Functional Verification

- ☐ The functionality of RTL code is verified using testbenchs it is also called "behavioral Simulation"
- ☐ Some of the popular simulators :
 - ModelSim®
 - NCSim®
- Code coverage indicates how much portion of RTL code is covered by testvectors
 - Statement coverage
 - Expression coverage
 - Branch Coverage
 - Toggle coverage
- ☐ Typically a "good" testbench achieves more than 95% code coverage

Himanshu Patel

Design For Test

- Along with user logic, extra blocks are added for detection of manufacturing defects
- ☐ DFT is "structural test" (unlike, Dynamic simulation which is functional test)
- DFT methodology
 - Built In Self Test (BIST)
 - Boundary Scan chain (JTAG)
 - Internal Scan Chain

—Netlist level

- DFT Advantages:
 - Improve quality by detecting defects
 - Make it easier to generate vectors
 - Reduce vector generation time
- DFT Disadvantages:
 - Area overhead of 10-15%

BIST (Built In Self Test) Insertion

- Along with user logic, additional blocks are added for self test
 - Memory BIST (MBIST)
 - Logic BIST (LBIST)

JTAG Insertion

IEEE 1149.1 standard for Boundary Scan test

Himanshu Patel

Synthesis

- Process of converting RTL code in to gate level netlist
- □ ASIC Vendor provides Cell library of basic gates (AND,OR,FF,RAM,FIFO..)
- □ Pre synthesized IP Core blocks (DesignWare,...) are treated as "Black Box"
- □ Some of the popular synthesizer :
 - Synopsys DC, Cadence Ambit BuildGates Synplify ASIC

- Synthesis Script contains directives for synthesizer
 - Optimization goal : speed/area
 - Timing constraints
 - FSM encoding style etc
- Special care should be taken for "high fanout nets" like clock & reset
 - They are not synthesized at this level Set_dont_touch_network
 - During Clock Tree Synthesis process, layout tool creates optimized clock tree

Himanshu Patel

Pre Layout Timing Simulation

- □ Two types Timing Delays
 - Cell delay (input to output of a cell)
 - Propagation delay (o/p of cell1 to i/p of cell2)
- Delays are specified as (min, typ, max) depending on PVT (Process, Voltage, Temperature) condition
- Wireload models are used to estimate propagation delay based on fanouts because at this stage Layout is not done
- Setup violations must be addressed
 - Pipelining
 - Register retiming (balancing combi. Logic)
- Hold violations can be ignored at this stage

Setup violation: Data late, clock early Max delays are considered Decides maximum clock frequency

Hold violation: Data early, clock late Min delays are considered

Design Rule Check (DRC)

- □ The gate level netlist must be checked for "design rules" before starting Back End design
- ☐ There are different DRCs/LRCs
 - Illegal net connections (two outputs shorted, etc)
 - Drive load limit violations
 - ☐ (fanout of driver < total load to output)
 - Undriven nets
 - Naming convention errors
- DRC tool kit is provided by ASIC foundry

Back End Design

Scan Insertion (Design For Test)

- All internal flip-flops & latches are replaced by Scan Flip-flops (FF with MUX)
- □ Testability
 - Controllability
 - Observability
- Scan Pins
 - Scan In
 - Scan Out
 - Scan Enable
- scan cells are

NOT connected until placement is completed so 'chain' is not formed at this stage

Floorplanning

Floorplanning is a mapping between the logical description (Hierarchical Netlist) and the physical description (the floorplan).

The goals of floorplanning are to:

- arrange the blocks on a chip,
- decide the location of the I/O pads,
- decide the location and number of the power pads,
- to minimize the chip area and delay

Floorplanning

initial random floorplan generated by a floorplanning tool

Blocks are moved to reduce congestion

Placement

- Placement is arranging all the logic cells within the flexible blocks on a chip.
- objectives of placement
 - Guarantee the router can complete the routing step
 - Minimize all the critical net delays
 - Make the chip as dense as possible

block A contains four rows of standard cells (A.211, A.19, A.43, A.25) The Goal is to decide placement to achieve minimum distance between cells

Scan chain stitching & ATPG

After placement, Scan cells are stitched together to form a 'scan chain'

Normally Different scan chains are formed for different clock domain Flip Flops

ATPG (Automated Test Pattern Generation)

☐ ATPG generates *Test patterns/vectors which are applied* to DUT for detection of manufacturing defects

☐ The goal of ATPG is to create a set of patterns that achieves a

given (maximum) test coverage,

☐ ATPG consists of two main steps:

- ☐generating patterns
- □ fault simulation.

Fault models:

- Stuck-at-fault
- Transition fault: Propagation delay of cell
- Path delay: Sum of time delays in path
- **IDDQ**: Measurement of quiescent power supply current during the stable state

Λ	B	Y		
		Good	A s.a.0	A s.a.1
0	6	0	0	0
0		0	0	1
1	0	0	0	0
1		5 7	0	1

Himanshu Patel

Clock Tree Synthesis (CTS)

- Clock Tree is defined by its startpoint (source) and endpoints (sinks)
- During CTS, delay and skew from source to sinks are optimized.

Step 1: Generate a clock tree

Step 2: Tune the clock tree to meet Skew & Slew target

Routing

- □ Routing is done in 2 steps
 - Global Routing: plans channels for routing between blocks, Its goal are:
 - Minimize the total interconnect length.
 - Maximize the probability that the detailed router can complete the routing.
 - ☐ Minimize the critical path delay.

Global routing for a cell-based ASIC formulated as a graph problem.

Detailed Routing:

- complete all the connections between logic cells
- exact location and layers for each interconnect are determined

Completed channel route (2 metal layers m1 and m).

Back Annotation & RC Extraction

- Delays are extracted from physical & RC information in Standard Delay Format (SDF)
- Back annotated SDF file is used during post layout timing simulation and STA.

The lumped-RC interconnect model.

Formal Verification

- Equivalence check between pre-layout and post layout
- Mathematical models are made to check functionality equivalence at each node of netlist
- □ FV can also be done between RTL & Netlist
- EDA Tool
 - Formal Pro (Mentor)
 - Formality (synopsis)

STA (Static Timing Analysis)

- Static timing analysis is a method of validating the timing performance of a design by checking all possible paths for timing violations.
- STA tool breaks the design down into a set of timing paths, calculates the signal propagation delay along each path
- ☐ Compared with dynamic simulation, STA is much faster because it is not necessary to simulate the logical operation of the circuit.

STA - Timing Paths

Timing Paths:

- Input path (I/p pad to FF)
- □ Sequential path (FF to FF)
- Output path (FF to o/p)
- Combination path (i/p to o)

Post Layout Timing Simulation

- Back annotated SDF with post layout netlist is simulated at min, typ and max condition
- □ All interface timing (Ex. ROM/RAM access timing, PCI bus timing etc) should be modeled as Bus Functional Model (BFM)
- The simulation should be free from all Setup and hold violation
- □ Whenever data is crossing clock domain, metastable conditions should be checked.

Setup and Hold Checking

Mixed Signal ASIC

- ☐ Digital + Analog blocks
- Analog blocks
 - ADC, DAC
 - Amplifiers, comparators etc
 - RF Modulators & Demodulators

Mixed Signal ASIC Design Flow

Deep Submicron ASIC : Challenges

As technology advances towards submicron (below 0.13um/0.9um) issues like signal integrity, power etc become prominent

Deep Submicron issues

Power

 Increased DC power due to leakage current

Signal Integrity

- Lower supply voltage reduces noise margin
- Smaller geometries induces coupling noise
- Higher current density causes EM issues

Design Complexity

- Transistor Density doubles every 18 months (moor's law)
- Clock frequency increases above 5GHz

OBC ASIC: A Case Study

- OBC (On Board Controller) ASIC is designed for different ISRO's Satellite missions having on board Distributed controllers
- OBC ASIC Features
 - On chip 8051 micro controller soft core
 - 4 UARTs, 3 Timers, 6 Interrupts
 - 3 synchronous serial receivers & transmitters
 - 10 ports for parallel I/Os
 - On chip 1KB ROM containing monitor program
 - 16 programmable timing signal generator
- ASIC Features
 - CMOS Gate Array ASIC
 - 256 pin package , 224 user I/Os
 - 5 V core & 5V I/Os
 - Radiation Hardened process
 - Testability features like SCAN and ATPG with logic Fault Coverage of > 95%

OBC Block Diagram Reset_n CLOCK & Clock Reset RESET Module PClk_en[7:0] External Interrupt Interrupts Controller WDT Watch Interface Dog Timer Timer Controller Inputs Timer-0,1,2 UART-0 UART-1 ADC Delta Sigma UART-2 Interface * ADC (H &V) UART-3 Serial SSR synchronous Interface receiver (SSR) External Str_data_in[7 SST-1 & 2 _ Serial Memory synchronous Interface 4 External SFR transmitter-1&2 Memory Interface Interface Interface (ROM & Bus RAM) Arbitrator DW8051 Event Micro-Controller Clk_tsg1 Programmable Timing **Soft Core EPPI** TimeSigOut1[7:0] Parallel Signal Ports Generator-1 Interface (6 ports) (EPPI) SRAM 1024 X 8 Timing TimeSigOut2[7:0] bits Signal Int. RAM Generator-2 Internal 256 X 8 RAM Interface AuxData[7:0] bits Auxilary -Clk_aux Timing Control Signals Generator Monitor Internal Program Parallel ROM Port Ports_dw Module Interface Ports Interface Module Programmable (ROM 1Kx8). PCLM Interface Combinatorial Logic Module (PCLM) -Debug

DW8051

Synopsys® DesignWare 8051 Soft IP Core

Features

- ☐ High-speed architecture
 :4 clocks per instruction
 cycle 2.5X improvement
 over the standard 8051
- Dual data pointers
- ☐ 3 Timers, 2 UARTs
- Extended Interrupts (7 nos)
- Variable length MOVX to access fast/slow RAM peripherals
- Fully static synchronous design

OBC Peripheral Modules

- Watch Dog Timer : generates reset/interrupt whenever the software hangs
- □ Delta Sigma ADC: 8 bit digitization of lowrate analog data
- Programmable Combinatorial Logic Module: A small FPGA CLB inside ASIC...!

- ☐ **Timing Signal Generator**: This is generic timing signal generator, which can generate up to 16 programmable pulses
- Auxiliary Data Interface: This is parallel/serial auxiliary interface with built in dual port RAM.
- □ Serial Synchronous Transmitter/Receiver This is 3-wire (clock, strobe, data) synchronous tx/rx
- Monitor Program :OBC ASIC contains 1K Bytes of on chip ROM which holds Monitor program firmware.

Event Programmable Parallel Interface

- In Phased array distributed controller it is required to load Transmit & Receive characterization data within time constraint as shown above
- □ This task was earlier implemented in software as "Interrupt Service Routine", but due to variable interrupt latency it was not meeting timing constraint
- So a Hardware module was implemented

EEPPI - Architectute

samples S(n-1),S(n)	Event
0,0	Level-'0' (low)
0,1	Rising event
1,0	Falling event
1,1	Level-'1' (high)

ASIC Design Flc

Himanshu Patel

UART_RRS

UART with Recursive Running Sum Filter to remove noise samples from incoming serial data

UART_RRS Test Results

- UART_RRS has better performance than standard UART at higher Noise levels
 - UART_RRS can decode data correctly up to 37% corrupted sample
 - Standard UART can decode data up to 6 % only

Challenges Faced during OBC design

- ☐ Almost all OBC modules are programmable/ configurable because exact funtionality was not freezed during front-end design.
- Multi Clock Domain
 - OBC contains 7 clock domains so 7 Scan Chains were inserted.
- □ Data crossing clock domains
 - Asynchronous DPRAM, with Left and Right Ports accessing data at different clocks
 - Series of FFs to avoid Metastable condition
- □ Rad Hard cells
 - All Flip flops used in OBC are radhard (ASIC library contained Soft, Rad Tol. & Rad hard)
- Monitor Program
 - On chip 1K ROM contains assembly software, which was regorously tested as lateron software modification was not possible

Proto ASIC Testing

Thank You

To Probe Further:

http://Geocities.com/hnpatel81/asic.htm