
Verilog 1995, 2001, and
SystemVerilog 3.1

Languages for Embedded Systems

Prof. Stephen A. Edwards
Summer 2004
NCTU, Taiwan

The Verilog Language

Originally a modeling language for a very efficient
event-driven digital logic simulator

Later pushed into use as a specification language for logic
synthesis

Now, one of the two most commonly-used languages in
digital hardware design (VHDL is the other)

Virtually every chip (FPGA, ASIC, etc.) is designed in part
using one of these two languages

Combines structural and behavioral modeling styles

Multiplexer Built From Primitives
module mux(f, a, b, sel); Verilog programs

built from modulesoutput f;
input a, b, sel;

Each module has
an interface

and g1(f1, a, nsel),
g2(f2, b, sel);

or g3(f, f1, f2);
not g4(nsel, sel); Module may contain

structure: instances of
primitives and other
modules

endmodule

g1
g4

g2

g3

a

b

sel

f
nsel

f1

f2

Multiplexer Built with Always
module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

always

Modules may
contain one or more
always blocks

@(a or b or sel) Sensitivity list
contains signals
whose change
makes the block
execute

if (sel) f = a;
else f = b;

endmodule

a

b

sel

f

Multiplexer Built with Always
module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

A reg behaves like
memory: holds its value
until imperatively
assigned otherwise

always @(a or b or sel)
if (sel) f = a;
else f = b;

Body of an always block
contains traditional
imperative code

endmodule

a

b

sel

f

Mux with Continuous Assignment
module mux(f, a, b, sel);
output f;
input a, b, sel;

assign
LHS is always set to
the value on the RHS

Any change on the right
causes reevaluation

f = sel ? a : b;

endmodule

a

b

sel

f

Mux with User-Defined Primitive
primitive mux(f, a, b, sel);
output f;
input a, b, sel;

table
1?0 : 1;

Behavior defined using
a truth table that
includes “don’t cares”

0?0 : 0;
?11 : 1;
?01 : 0;
11? : 1;

This is a less pessimistic than
others: when a & b match, sel is
ignored; others produce X

00? : 0;
endtable
endprimitive

a

b

sel

f

How Are Simulators Used?

Testbench generates stimulus and checks response

Coupled to model of the system

Pair is run simultaneously

Testbench System Model

Stimulus

Response
Result checker

Structural Modeling

When Verilog was first developed (1984) most logic
simulators operated on netlists

Netlist: list of gates and how they’re connected

A natural representation of a digital logic circuit

Not the most convenient way to express test benches

Behavioral Modeling

A much easier way to write testbenches

Also good for more abstract models of circuits

• Easier to write

• Simulates faster

More flexible

Provides sequencing

Verilog succeeded in part because it allowed both the
model and the testbench to be described together

How Verilog Is Used

Virtually every ASIC is designed using either Verilog or
VHDL (a similar language)

Behavioral modeling with some structural elements

“Synthesis subset” can be translated using Synopsys’
Design Compiler or others into a netlist

Design written in Verilog

Simulated to death to check functionality

Synthesized (netlist generated)

Static timing analysis to check timing

Two Main Components of Verilog:
Behavioral

Concurrent, event-triggered processes (behavioral)

Initial and Always blocks

Imperative code that can perform standard data
manipulation tasks (assignment, if-then, case)

Processes run until they delay for a period of time or wait
for a triggering event

Two Main Components of Verilog:
Structural

Structure (Plumbing)

Verilog program build from modules with I/O interfaces

Modules may contain instances of other modules

Modules contain local signals, etc.

Module configuration is static and all run concurrently

Two Main Data Types: Nets

Nets represent connections between things

Do not hold their value

Take their value from a driver such as a gate or other
module

Cannot be assigned in an initial or always block

Two Main Data Types: Regs

Regs represent data storage

Behave exactly like memory in a computer

Hold their value until explicitly assigned in an initial or
always block

Never connected to something

Can be used to model latches, flip-flops, etc., but do not
correspond exactly

Actually shared variables with all their attendant problems

Discrete-event Simulation

Basic idea: only do work when something changes

Centered around an event queue that contains events
labeled with the simulated time at which they are to be
executed

Basic simulation paradigm

• Execute every event for the current simulated time

• Doing this changes system state and may schedule
events in the future

• When there are no events left at the current time
instance, advance simulated time soonest event in the
queue

Four-valued Data

Verilog’s nets and registers hold four-valued data

0, 1: Obvious

Z: Output of an undriven tri-state driver. Models case
where nothing is setting a wire’s value

X: Models when the simulator can’t decide the value

• Initial state of registers

• When a wire is being driven to 0 and 1 simultaneously

• Output of a gate with Z inputs

Four-valued Logic

Logical operators work on three-valued logic

0 1 X Z

0 0 0 0 0
Outputs 0 if either
input is 0

1 0 1 X X

X 0 X X X Outputs X if both
inputs are gibberishZ 0 X X X

Structural Modeling

Nets and Registers

Wires and registers can be bits, vectors, and arrays

wire a; // Simple wire

tri [15:0] dbus; // 16-bit tristate bus

tri #(5,4,8) b; // Wire with delay

reg [-1:4] vec; // Six-bit register

trireg (small) q; // Wire stores a small charge

integer imem[0:1023]; // Array of 1024 integers

reg [31:0] dcache[0:63]; // A 32-bit memory

Modules and Instances

Basic structure of a Verilog module:

module mymod(out1, out2,

Verilog convention
lists outputs first

in1, in2);

output out1;

output [3:0] out2;

input in1;

input [2:0] in2;

endmodule

Instantiating a Module

Instances of

module mymod(y, a, b);

look like

mymod mm1(y1, a1, b1); // Connect-by-position

mymod (y2, a1, b1),

(y3, a2, b2); // Instance names omitted

// Connect-by-name

mymod mm2(.a(a2), .b(b2), .y(c2));

Gate-level Primitives

Verilog provides the following:

and nand logical AND/NAND

or nor logical OR/NOR

xor xnor logical XOR/XNOR

buf not buffer/inverter

bufif0 notif0 Tristate with low enable

bifif1 notif1 Tristate with high enable

Delays on Primitive Instances

Instances of primitives may include delays

buf b1(a, b); // Zero delay

buf #3 b2(c, d); // Delay of 3

buf #(4,5) b3(e, f); // Rise=4, fall=5

buf #(3:4:5) b4(g, h); // Min-typ-max

Switch-level Primitives

Verilog also provides mechanisms for modeling CMOS
transistors that behave like switches

A more detailed modeling scheme that can catch some
additional electrical problems when transistors are used in
this way

Now, little-used because circuits generally aren’t built this
way

More seriously, model is not detailed enough to catch
many of the problems

These circuits are usually simulated using SPICE-like
simulators based on nonlinear differential equation solvers

User-Defined Primitives

Way to define gates and sequential elements using a truth
table

Often simulate faster than using expressions, collections
of primitive gates, etc.

Gives more control over behavior with X inputs

Most often used for specifying custom gate libraries

A Carry Primitive

primitive carry(out, a, b, c);

output out;
Always has exactly
one output

input a, b, c;

table

00? : 0;

0?0 : 0;

?00 : 0;

Truth table may include
don’t-care (?) entries

11? : 1;

1?1 : 1;

?11 : 1;

endtable

endprimitive

A Sequential Primitive
Primitive dff(q, clk, data);

output q; reg q;

input clk, data;

table

// clk data q new-q

(01) 0 : ? : 0; // Latch a 0
(01) 1 : ? : 1; // Latch a 1
(0x) 1 : 1 : 1; // Hold when d and q both 1
(0x) 0 : 0 : 0; // Hold when d and q both 0
(?0) ? : ? : -; // Hold when clk falls
? (??) : ? : -; // Hold when clk stable
endtable

endprimitive

Continuous Assignment

Another way to describe combinational function

Convenient for logical or datapath specifications

wire [8:0] sum; Define bus widths

wire [7:0] a, b;

wire carryin;

assign sum = a + b + carryin;

Continuous
assignment:
permanently
sets the value of
sum to be
a+b+carryin.
Recomputed
when a, b, or
carryin changes

Behavioral Modeling

Initial and Always Blocks

initial
begin

// imperative statements
end

Runs when simulation starts

Terminates when control
reaches the end

Good for providing stimulus

always
begin
// imperative statements

end

Runs when simulation starts

Restarts when control
reaches the end

Good for modeling or
specifying hardware

Initial and Always

Run until they encounter a delay

initial begin
#10 a = 1; b = 0;
#10 a = 0; b = 1;

end

or a wait for an event

always @(posedge clk) q = d;

always begin
wait(i);
a = 0;
wait(i);
a = 1;

end

Procedural Assignment

Inside an initial or always block:

sum = a + b + cin;

Just like in C: RHS evaluated and assigned to LHS before
next statement executes

RHS may contain wires and/or regs

LHS must be a reg

(only primitives or continuous assignment may set wire
values)

Imperative Statements

if (select == 1) y = a;

else y = b;

case (op)

2’b00: y = a + b;

2’b01: y = a - b;

2’b10: y = a ˆ b;

default: y = ’hxxxx;

endcase

For Loops

Example generates an increasing sequence of values on
an output

reg [3:0] i, output;

for (i = 0 ; i <= 15 ; i = i + 1) begin

output = i;

#10;

end

While Loops

A increasing sequence of values on an output

reg [3:0] i, output;

i = 0;

while (i <= 15) begin

output = i;

#10 i = i + 1;

end

Modeling A Flip-Flop With Always

Very basic: an edge-sensitive flip-flop

reg q;

always @(posedge clk)

q = d;

q = d assignment runs when clock rises: exactly the
behavior you expect

Blocking vs. Nonblocking

Verilog has two types of procedural assignment

Fundamental problem:

• In a synchronous system, all flip-flops sample
simultaneously

• In Verilog, always @(posedge clk) blocks run in
some undefined sequence

A Flawed Shift Register

This does not work as you would expect:

reg d1, d2, d3, d4;

always @(posedge clk) d2 = d1;

always @(posedge clk) d3 = d2;

always @(posedge clk) d4 = d3;

These run in some order, but you don’t know which

Non-blocking Assignments

This version does work:

reg d1, d2, d3, d4;

always @(posedge clk) d2 <= d1;

Nonblocking rule:
RHS evaluated
when assignment
runs

always @(posedge clk) d3 <= d2;

always @(posedge clk) d4

LHS updated only
after all events for
the current instant
have run

<= d3;

Nonblocking Can Behave Oddly

A sequence of nonblocking assignments don’t
communicate

a = 1;

b = a;

c = b;

Blocking assignment:
a = b = c = 1

a <= 1;

b <= a;

c <= b;

Nonblocking assignment:
a = 1
b = old value of a
c = old value of b

Nonblocking Looks Like Latches

RHS of nonblocking taken from latches

RHS of blocking taken from wires

a = 1;

b = a;

c = b;
“1 c

a b ”

a <= 1;

b <= a;

c <= b;
“

1

c

a

b
”

Building Behavioral
Models

Modeling FSMs Behaviorally

There are many ways to do it:

• Define the next-state logic combinationally and define
the state-holding latches explicitly

• Define the behavior in a single always @(posedge

clk) block

• Variations on these themes

FSM with Combinational Logic
module FSM(o, a, b, reset);
output o;
reg o;

Output o is declared a reg
because it is assigned
procedurally, not because it
holds state

input a, b, reset;
reg [1:0] state, nextState;

always @(a or b or state)
case (state)

2’b00: begin
o = a & b;
nextState = a ? 2’b00 : 2’b01;

end
2’b01: begin

o = 0; nextState = 2’b10;
end

endcase

always @(posedge clk or reset)
if (reset)
state <= 2’b00;

else
state <= nextState;

endmodule

FSM with Combinational Logic
module FSM(o, a, b, reset);
output o;
reg o;
input a, b, reset;
reg [1:0] state, nextState;

always @(a or b or state)

Combinational block must be
sensitive to any change on any
of its inputs (Implies
state-holding elements
otherwise)

case (state)
2’b00: begin

o = a & b;
nextState = a ? 2’b00 : 2’b01;

end
2’b01: begin

o = 0; nextState = 2’b10;
end

endcase

always @(posedge clk or reset)

Latch implied by
sensitivity to the clock
or reset only

if (reset)
state <= 2’b00;

else
state <= nextState;

endmodule

FSM from a Single Always Block
module FSM(o, a, b);
output o; reg o;
input a, b;
reg [1:0] state;

always @(posedge clk or reset)

Expresses Moore
machine behavior:
Outputs are latched.
Inputs only sampled
at clock edgesif (reset) state <= 2’b00;

else case (state)
2’b00: begin

state <= a ? 2’b00 : 2’b01;
o <= a & b;

end
2’b01: begin

state <= 2’b10;
o <= 0;

Nonblocking assignments
used throughout to ensure
coherency. RHS refers to
values calculated in
previous clock cycle

end
endcase

Writing Testbenches
module test;
reg a, b, sel;

Inputs to device
under test

mux m(y, a, b, sel);

Device under test

initial begin
$monitor

$monitor is a built-in even-driven “printf”

($time,,"a=%b b=%b sel=%b y=%b",
a, b, sel, y);

a = 0; b= 0; sel = 0;
#10 a = 1;
#10 sel = 1;

Stimulus generated by
sequence of
assignments and
delays

#10 b = 1;
end

Simulating Verilog

Simulation Behavior

Scheduled using an event queue

Non-preemptive, no priorities

A process must explicitly request a context switch

Events at a particular time unordered

Scheduler runs each event at the current time, possibly
scheduling more as a result

Two Types of Events

Evaluation events compute functions of inputs

Update events change outputs

Split necessary for delays, nonblocking assignments, etc.

Update event writes
new value of a and
schedules any
evaluation events
that are sensitive to
a change on a

a <= b + c
Evaluation event
reads values of b
and c, adds them,
and schedules an
update event

Simulation Behavior

Concurrent processes (initial, always) run until they stop
at one of the following

• #42

Schedule process to resume 42 time units from now

• wait(cf & of)

Resume when expression “cf & of” becomes true

• @(a or b or y)

Resume when a, b, or y changes

• @(posedge clk)

Resume when clk changes from 0 to 1

Simulation Behavior

Infinite loops are possible and the simulator does not
check for them This runs forever: no context switch
allowed, so ready can never change

while (˜ready)

count = count + 1;

Instead, use

wait(ready);

Simulation Behavior

Race conditions abound in Verilog

These can execute in either order: final value of a
undefined:

always @(posedge clk) a = 0;

always @(posedge clk) a = 1;

Simulation Behavior

Semantics of the language closely tied to simulator
implementation

Context switching behavior convenient for simulation, not
always best way to model

Undefined execution order convenient for implementing
event queue

Compiled-Code Discrete-Event Sim.

Most modern simulators use this approach

Verilog program compiled into C

Each concurrent process (e.g., continuous assignment,
always block) becomes one or more C functions

Initial and always blocks split into multiple functions, one
per segment of code between a delay, a wait, or event
control (@)

Central, dynamic event queue invokes these functions and
advances simulation time

Verilog and Logic
Synthesis

Logic Synthesis

Verilog is used in two ways

Model for discrete-event simulation

Specification for a logic synthesis system

Logic synthesis converts a subset of the Verilog language
into an efficient netlist

One of the major breakthroughs in designing logic chips in
the last 20 years

Most chips are designed using at least some logic
synthesis

Logic Synthesis Tools
Mostly commercial tools

• Very difficult, complicated programs to write well

• Limited market

• Commercial products in $10k – $100k price range

Major vendors

• Synopsys Design Compiler, FPGA Express

• Cadence BuildGates

• Synplicity (FPGAs)

• Exemplar (FPGAs)

Academic tools

• SIS (UC Berkeley)

Logic Synthesis

Takes place in two stages:

1. Translation of Verilog (or VHDL) source to a netlist

Register inference performed here

2. Optimization of the resulting netlist to improve speed
and area

Most critical part of the process

Algorithms very complicated and beyond the scope of
this class

Logic Optimization

Netlist optimization the critical enabling technology

Takes a slow or large netlist and transforms it into one that
implements the same function more cheaply

Typical operations:

• Constant propagation

• Common subexpression elimination

• Function factoring

Time-consuming operation. Can take hours for large chips

Translating Verilog into Gates

Parts of the language easy to translate

Structural descriptions with primitives is already a netlist

Continuous assignment expressions turn into little
datapaths

Behavioral statements the bigger challenge

What Can Be Translated

Every structural definition

Behavioral blocks

• Depends on sensitivity list

• Only when they have reasonable interpretation as
combinational logic, edge, or level-sensitive latches

• Blocks sensitive to both edges of the clock, changes on
unrelated signals, changing sensitivity lists, etc. cannot be
synthesized

User-defined primitives

• Primitives defined with truth tables

• Some sequential UDPs can’t be translated (not latches or
flip-flops)

What Is Not Translated

Initial blocks

• Used to set up initial state or describe finite testbench stimuli

• Don’t have obvious hardware component

Delays

• May be in the Verilog source, but are simply ignored

A variety of other obscure language features

• In general, things heavily dependent on discrete-event
simulation semantics

• Certain “disable” statements

• Pure events

Register Inference

The main trick

A reg is not always a latch or flip-flop

Rule: Combinational if outputs always depend exclusively
on sensitivity list

Sequential if outputs may also depend on previous values

Register Inference

Combinational:
reg y;

always @(a or b or sel)

Sensitive to
changes on all the
variable it reads

if (sel) y = a;

else y = b; y is always assigned

Sequential:
reg q;

always @(d or clk)

if (clk) q = d;
q only assigned
when clk is 1

Register Inference

A common mistake is not completely specifying a case

statement

This implies a latch:

always @(a or b)

case ({a, b})

2’b00 : f = 0;

2’b01 : f = 1;

2’b10 : f = 1;

endcase
f is not assigned when
{a,b}= 2’b11

Register Inference

The solution is to always have a default case

always @(a or b)

case ({a, b})

2’b00 : f = 0;

2’b01 : f = 1;

2’b10 : f = 1;

default : f = 0; f is always assigned

endcase

Inferring Latches with Reset

Latches and Flip-flops often have reset inputs

Can be synchronous or asynchronous

Asynchronous positive reset:

always @(posedge clk or posedge reset)

if (reset)

q <= 0;

else q <= d;

Simulation-synthesis Mismatches

Many possible sources of conflict

• Synthesis ignores delays (e.g., #10), but simulation
behavior can be affected by them

• Simulator models X explicitly, synthesis does not

• Behaviors resulting from shared-variable-like behavior
of regs is not synthesized:

always @(posedge clk) a = 1;

New value of a may be seen by other @(posedge clk)
statements in simulation, never in synthesis

Summary of Verilog 1995

Systems described hierarchically

• Modules with interfaces

• Modules contain instances of primitives, other
modules

• Modules contain initial and always blocks

Based on discrete-event simulation semantics

• Concurrent processes with sensitivity lists

• Scheduler runs parts of these processes in response
to changes

Modeling Tools

Switch-level primitives: CMOS transistors as switches that
move around charge

Gate-level primitives: Boolean logic gates

User-defined primitives: Gates and sequential elements
defined with truth tables

Continuous assignment: Modeling combinational logic
with expressions

Initial and always blocks: Procedural modeling of behavior

Language Features
Nets (wires) for modeling interconnection

• Non state-holding

• Values set continuously

Regs for behavioral modeling

• Behave exactly like memory for imperative modeling

• Do not always correspond to memory elements in
synthesized netlist

Blocking vs. nonblocking assignment

• Blocking behaves like normal “C-like” assignment

• Nonblocking delays update, modeling synchronous
behavior

Language Uses

Event-driven simulation

• Event queue containing things to do at particular
simulated times

• Evaluate and update events

• Compiled-code event-driven simulation for speed

Logic synthesis

• Translating Verilog (structural and behavioral) into
netlists

• Register inference: whether output is always updated

• Logic optimization for cleaning up the result

Little-used Language Features

Switch-level modeling

• Much slower than gate or behavioral-level models

• Insufficient detail for modeling most electrical
problems

• Delicate electrical problems simulated with a
SPICE-like differential equation simulator

Little-used Language Features

Delays

• Simulating circuits with delays does not improve
confidence enough

• Hard to get timing models accurate enough

• Never sure you have simulated the worst case

• Static timing analysis has taken its place

Compared to VHDL

Verilog and VHDL are comparable languages

VHDL has a slightly wider scope

• System-level modeling

• Exposes even more discrete-event machinery

VHDL is better-behaved: Fewer sources of
nondeterminism (e.g., no shared variables)

VHDL is harder to simulate quickly

VHDL has fewer built-in facilities for hardware modeling

VHDL is a much more verbose language: Most examples
don’t fit on slides

In Conclusion

Verilog is a deeply flawed language

• Nondeterministic

• Often weird behavior due to discrete-event semantics

• Vaguely defined synthesis subset

• Many possible sources of simulation/synthesis
mismatch

In Conclusion

Verilog is widely used because it solves a problem

• Good simulation speed that continues to improve

• Designers use a well-behaved subset of the language

• Makes a reasonable specification language for logic
synthesis

• Logic synthesis one of the great design automation
success stories

Verilog 2001

Verilog 2001

Revised version of the Verilog language

IEEE Standard 1364-2001

Minor changes to the language:

ANSI C style ports
standard file I/O
(* attributes *)
multi dimensional arrays
generate
$value$plusargs
configurations
signed types

localparam
‘ifndef ‘elsif ‘line
memory part selects
automatic
constant functions
@*
variable part select
** (power operator)

Implicit event lists

Common mistake: forgetting a variable in combinational
sensitivity list

always @(a or b or c

Forgot to include d

)
f = a & b | c & d;

Does not simulate like hardware behaves.

Verilog 2001’s implicit sensitivity list:

always @*
f = a & b | c & d;

Makes process sensitive to all variables on right-hand side
of assignments.

Generate

Hardware structures often very regular. Want to create
them algorithmically.

Verilog’s generate: very clever macro expansion.

module gray2bin1 (bin, gray);
parameter SIZE = 8;
output [SIZE-1:0] bin;
input [SIZE-1:0] gray;

genvar i; // Compile-time only
generate for (i=0; i<SIZE; i=i+1)

begin:bit
assign bin[i] = ˆgray[SIZE-1:i];

end
endgenerate

endmodule

Attributes

Logic synthesis has relied on hints in comments:

always @(posedge clk)
begin
case (instr[6:5]) // synopsys full_case parallel_case
0 : mask <= 8’h01;
1 : mask <= 8’h02;
2 : mask <= 8’h04;
3 : mask <= 8’h08;
endcase

end

full_case means one case will always be true,
parallel_case means at most one will be true.

Can greatly simplify the generated logic, but
simulation/synthesis mismatch if assertion is not true.

Attributes

Such attributes now a first-class part of the language.
Simulator understands and checks validity.

always @(posedge clk)
begin

(* full_case, parallel_case=1 *)
case (instr[6:5])
0 : mask <= 8’h01;
1 : mask <= 8’h02;
2 : mask <= 8’h04;
3 : mask <= 8’h08;
endcase

end

ANSI C-style ports

Verilog 1995 ports could require three declarations:

module foo(myport1, myport2);
output myport1;
reg [7:0] myport1;
input [3:0] myport2;
...
endmodule

Verilog 2001 reduces this to one:

module foo(output reg [7:0] myport1,
input [3:0] myport2);

...
endmodule

Configurations

file lib.map
library gateLib ./*.vg;
library rtlLib *.v;

// specify rtl adder for top.a1
// gate-level adder for top.a2
config cfg1;
design rtlLib.top;
default liblist rtlLib;
instance top.a2
liblist gateLib;

endconfig

A way to select among different
implementations using the same
top-level modules.

file adder.v
module adder(...);
// RTL adder
// implementation
...

endmodule

file top.v
module top();
adder a1(...);
adder a2(...);
endmodule

file adder.vg
module adder(...);
// gate-level adder
...

endmodule

SystemVerilog

SystemVerilog

Much bigger change to the language.

Verification Features
assertions
biased random variables
test program blocks
process control
mailboxes
semaphores
clocking domains
direct C function calls

C++-like features
classes
dynamic arrays
inheritance
associative arrays
strings
references

More System Verilog Features

C-like features
int shortint

longint byte

shortreal void

alias enum

struct union

const typedef

break continue

return do while

casting
globals
++ --

+= -= *= /=

>>= <<= >>>= <<<=

&= |= ˆ= %=

Modeling Features
interfaces
dynamic processes
nested hierarchy
2-state modeling
unrestricted ports
packed arrays
implicit port connections
array assignments
enhanced literals
enhanced event control
time values & units
unique/priority case/if
logic-specific processes
root name space access

C-like Features

New Types

type values width new
reg { 0, 1, X, Z } 1+
logic { 0, 1, X, Z } 1+ ✓

integer { 0, 1, X, Z } 32

bit { 0, 1 } 1+ ✓

byte { 0, 1 } 8 ✓

shortint { 0, 1 } 16 ✓

int { 0, 1 } 32 ✓

longint { 0, 1 } 64 ✓

reg & logic now the same: both permit either continuous
or procedural assignment, but not both.

Other new types for two-valued functional simulation.

‘ifdef and typedef

Can define aliases for existing types. Useful, e.g., for
switching between four- and two-valued simulation:

‘ifdef TWOSTATE
typedef bit bit_t;

‘else
typedef logic bit_t;

‘endif

module dff (
output bit_t q,
input bit_t d, clk, rst);

always @(posedge clk)
if (rst) q <= 0;
else q <= d;

endmodule

Structs and Unions

SystemVerilog provides C-like structs and unions in both
packed and unpacked forms.

typedef struct {
logic PARITY;
logic[3:0] ADDR;
logic[3:0] DEST;

} pkt_t;

pkt_t mypkt;
mkpkt.ADDR = 12;

Packed vs. Unpacked

Structs are unpacked by default. The alignment of their
fields is implementation-dependent for efficiency, e.g.,
chosen by the C compiler.

typedef struct {
logic PARITY;
logic[3:0] ADDR;
logic[3:0] DEST;

} pkt_t;

31 3 1 0

PARITY

ADDR

DATA

Packed vs. Unpacked

Marking them packed removes padding: useful in unions.

typedef struct packed {
logic PARITY;
logic[3:0] ADDR;
logic[3:0] DEST;

} pkt_t;

8 5 4 1 0

DEST ADDR PARITY

Packed Structs and Unions

typedef struct packed {
logic [15:0] source_port;
logic [15:0] dest_port;
logic [31:0] sequence;

} tcp_t;

typedef struct packed {
logic [15:0] source_port;
logic [15:0] dest_port;
logic [15:0] length;
logic [15:0] checksum;

} udp_t;

typedef union packed {
tcp_t tcp_h;
udp_t udp_h;
bit [63:0] bits;
bit [7:0][7:0] bytes;

} ip_t;

ip_t ip_h;
logic parity;

// all are equivalent
ip_h.upd_h.length = 5;
ip_h.bits[31:16] = 5;
ip_h.bytes[3:2] = 5;

tcp_t source_port dest_port sequence

udp_t source_port dest_port length checksum

Operator Overloading

SystemVerilog provides operator overloading facilities like
those in C++ through the bind keyword.

typedef struct {
bit sign;
bit [3:0] exponent;
bit [10:0] mantissa;

}float;

bind + function float faddfr(float, real);
bind + function float faddff(float,

float);

float A, B, C, D;

assign A = B + C; // means A = faddff(B, C);
assign D = A + 1.0; // means A = faddfr(A, 1.0);

Classes

SystemVerilog provides C++-like classes with automatic
garbage collection.
class Packet;
bit [3:0] cmd;
int status;
header_t header;

function int get_status();
return status;

endfunction
extern task set_cmd(input bit [3:0] a);

endclass

task Packet::set_cmd(input bit [3:0] a);
cmd = a;

endtask

initial begin
Packet myPkt = new; // Create a new packet

end

Inheritance

As in C++, classes can inherit from other classes:

class ErrPkt extends Packet;
bit [3:0] err;

// New function
function bit [3:0] show_err;
return err;

endfunction

// Overrides Packet::set cmd
task set_cmd(input bit [3:0] a);
cmd = a + 1;

endtask
endclass

Packages
package ComplexPkg;
typedef struct {
float i, r;

} Complex;

function Complex add(Complex a, b);
add.r = a.r + b.r;
add.i = a.i + b.i;

endfunction
function Complex mul(Complex a, b);
mul.r = (a.r * b.r) + (a.i * b.i);
mul.i = (a.r * b.i) + (a.i * b.r);

endfunction
endpackage : ComplexPkg

module foo (input bit clk);
import ComplexPkg::*;
Complex a,b;

always @(posedge clk)
c = add(a,b);

endmodule

Hardware Modeling
Features

always comb, latch, and ff

In RTL design, a Verilog always block models
combinational logic, sequential logic driving flip-flops, or
sequential logic driving latches, never more than one.

SystemVerilog’s always comb, always ff, and always latch
keywords make the designer’s intent clear to the compiler
so it can issue error messages.

always comb, latch, and ff

// Probably intended combinational, but c becomes latch
always @(a or b)

if (b) c = a;

// Error: “missing else branch: c is not assigned”
always_comb

if (b) c = a;

// A correct level-sensitive latch
always_latch

if (clk)
if (en) q <= d;

// Error: “q always assigned: it is not a latch”
always_latch

q <= d

always comb, latch, and ff

Compiler verifies coding style.

// Correct edge-sensitive FF with asynchronous reset
always_ff @(posedge clk, negedge rst_n)
if (!rst_n) q <= 0;
else q <= d;

// Error: sensitivity not on edges
always_ff @(clk, rst_n)

if (!rst_n) q <= 0;
else q <= d;

// Error: combinational logic loop
always_latch

if (en) q <= d;
else q <= q; // Error

Unique/Priority

Verilog 1995 had no provision for checking uniqueness of
conditions: synthesis tools placed pragmas in comments.

Verilog 2001 added attributes for such conditions as
first-class entities.

SystemVerilog introduces new keywords implying unique
and complete conditions.

Cases must be Condition must be

complete unique

priority ✓

unique ✓ ✓

Priority Examples
// error if none of irq0–irq2 is true
priority case (1’b1)
irq0: irq = 3’b1 << 0;
irq1: irq = 3’b1 << 1;
irq2: irq = 3’b1 << 2;

endcase

// error if none of irq0–irq2 is true
priority if (irq0) irq = 3’b1;
else if (irq1) irq = 3’b2;
else if (irq2) irq = 3’b4;

// Default or else ignores priority
// This never raises an error:
priority if (irq0) irq = 3’b1;
else irq = 3’b0;

// Nor does this:
priority case (1’b1)
irq0: irq = 3’b1 << 0;
default: irq = 0;

endcase

Unique Examples
// Error if not exactly one of irq0–irq2 is true
unique case (1’b1)
irq0: irq = 3’b1 << 0;
irq1: irq = 3’b1 << 1;
irq2: irq = 3’b1 << 2;

endcase

// Error if not exactly one of irq0–irq2 is true
unique if (irq0) irq = 3’b1;
else if (irq1) irq = 3’b2;
else if (irq2) irq = 3’b4;

// Error if both irq0 and irq1 are true
unique if (irq0) irq = 3’b1;
else if (irq1) irq = 3’b2;
else irq = 3’b0;

// Error if both irq0 and irq1 are true:
unique case (1’b1)
irq0: irq = 3’b1 << 0;
irq1: irq = 3’b1 << 1;
default: irq = 0;

endcase

Implicitly-named ports

Hierarchy in Verilog usually for separating namespaces.
Net and port names typically common across modules.
Verbose in Verilog 1995:

module top;
wire [3:0] a;
wire [7:0] b;
wire [15:0] c;

foo foo1(a, b, c);
bar bar1(a, b, c);

endmodule

module foo(a, b, c);
input [3:0] a;
input [7:0] b;
input [15:0] c;

endmodule

module bar(a, b, c);
output a;
output b;
output c;
reg [3:0] a;
reg [7:0] b;
reg [15:0] c;

endmodule

Implicity-named Ports

Implicit ports plus ANSI-style declarations makes this
cleaner, especially for modules with many ports.

module top;
wire [3:0] a;
wire [7:0] b;
wire [15:0] c;

foo foo1(.*);
bar bar1(.*);

endmodule

module foo(
input [3:0] a,
input [7:0] b,
input [15:0] c);

endmodule

module bar(
output reg [3:0] a,
output reg [7:0] b,
output reg [15:0] c);

endmodule

Implicity-named Ports

Port renaming also supported. Allows specific ports to be
overridden or renamed as necessary.

module top;
wire [3:0] a;
wire [7:0] b;
wire [15:0] c;

foo foo1(.*);
bar bar1(.*, .other(c));

endmodule

module foo(
input [3:0] a,
input [7:0] b,
input [15:0] c);

endmodule

module bar(
output reg [3:0] a,
output reg [7:0] b,
output reg [15:0] other);

endmodule

Interfaces

For communication among modules. Like a collection of
shared variables.

interface simple_bus;
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

endinterface : simple_bus

module top;
logic clk = 0;
simple_bus mybus;

memory mem(mybus, clk);
cpu cpu(.b(mybus),

.clk(clk));
endmodule

module memory(
simple_bus a,
input bit clk);

always @(posedge clk)
a.gnt <= a.req & avail;

...
endmodule

module cpu(simple_bus b,
input bit clk);

...
endmodule

Interfaces with implicit ports

Even more simple. Use the same names and let the
compiler do the rest.

interface simple_bus;
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

endinterface : simple_bus

module top;
logic clk = 0;
simple_bus bus;

memory mem(.*);
cpu cpu(.*);

endmodule

module memory(
simple_bus bus,
input bit clk);

always @(posedge clk)
bus.gnt <= bus.req & av;

...
endmodule

module cpu(simple_bus bus,
input bit clk);

...
endmodule

Generic bundles

You can leave the exact type of an interface unspecified to
allow different implementations. Must connect explicitly.

interface simple_bus;
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

endinterface : simple_bus

module top;
logic clk = 0;
simple_bus bus;

memory mem(.*, .bus(bus));
cpu cpu(.*, .bus(bus));

endmodule

module memory(
interface bus,
input bit clk);

always @(posedge clk)
bus.gnt <= bus.req & av;

...
endmodule

module cpu(interface bus,
input bit clk);

...
endmodule

Ports on interfaces

Interfaces are groups of shared variables. Ports on
interfaces can bring connections in or out.

interface bus(
input bit clk,
output bit bus_error);

logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

endinterface : bus

module top;
logic clk = 0, bus_error;
bus b(clk, bus_error);

memory mem(.*);
cpu cpu(.*);

endmodule

module memory(bus b);

always @(posedge b.clk)
b.gnt <= b.req & av;

...
endmodule

module cpu(bus b);

always @(posedge b.clk)
b.bus_error <=

cpu_error;
...
endmodule

Modports in interfaces

A way to constrain signal directions in interfaces.

interface bus(
input bit clk);
logic req, gnt, rdy;
logic [7:0] addr, data;

modport slave(
input req, addr, clk,
output gnt, rdy,
inout data);

modport master(
output req, addr,
input gnt, rdy, clk,
inout data)

endinterface : bus

module top;
logic clk = 0;
bus b(clk);

memory mem(.*);
cpu cpu(.*);

endmodule

module memory(bus.slave b);

always @(posedge bus.clk)
b.gnt <= b.req & av;

...
endmodule

module cpu(bus.master b);
...
endmodule

Tasks and Functions in Interfaces

interface bus;
logic start;

task slaveRead(
input logic[7:0] addr);
...

endtask: slaveRead

task masterRead(
input logic[7:0] addr);
...

endtask: masterRead

modport slave(
import task slaveRead(

input logic[7:0] addr);
);

endinterface: bus

module memory(interface b);
logic[7:0] addr;
always @(posedge b.clk)

b.slaveRead(addr);
endmodule

module omnip(interface b);
always @(posedge b.clk)

b.masterRead(addr);
always @(posedge b.clk)

b.slaveRead(addr);
endmodule

module top;
bus b;
// can invoke slaveRead only
memory m(b.slave);
// can use slaveRead, masterRead
omnip o(b);

endmodule

Dynamically-sized Arrays

Truly software-like behavior.

module dynamic_array;

bit[3:0] myarray[]; // Creates null reference

initial begin
myarray = new[4]; // Allocate four 4-bit words

// Double the size of the array, preserving its contents
myarray = new[myarray.size() * 2](myarray);

end

endmodule

Associative Arrays

Very abstract notion. Like maps in C++, hashtables in
Java, or associative arrays in Perl, Python, Awk.
module associative_array;

typedef struct packed {
int a;
logic [7:0] b;

} mykey_t;

int myarray[mykey_t]; // new, empty associative array

initial begin
mykey_t key1 = {-3, 8’xFE }; // structure literal
myarray[key1] = 10;

if (myarray.exists(key1))
myarray[key1] = -5;

myarray.delete(key1);
end

endmodule

Queues

Often used to communicate between processes.

module queues;

int q[$] = { 2, 4, 8 }; // initial contents

int sq[$:15]; // maximum size is 16

initial begin
int e = q[0]; // first item: 2
e = q[$]; // last item: 8
q = { q, 6 }; // append: now 2, 4, 8, 6
q = { e, q }; // insert: now 8, 2, 4, 8, 6
q = q[1:$]; // remove: now 2, 4, 8, 6
q = q[1:$-1]; // delete first, last: now 4, 8
end

endmodule

Process Management: join

Fork starts processes; join terminates when all blocks
terminate.
fork

begin
$display("0ns have elapsed\n");
20ns; // delay

end

begin
20ns;
$display("20ns have elapsed\n");
5ns;

end

join
5ns;
$display("30ns have elapsed\n");

Process Management: join any

Fork starts processes; join any terminates when any of its
blocks terminate.
fork

begin
$display("0ns have elapsed\n");
20ns; // delay

end

begin
20ns;
$display("20ns have elapsed\n");
5ns;

end

join_any
5ns;
$display("25ns have elapsed\n");

Process Management: join none

Fork starts processes; join none terminates immediately,
leaving its blocks running.
fork

begin
$display("0ns have elapsed\n");
20ns; // delay

end

begin
20ns;
$display("20ns have elapsed\n");
5ns;

end

join_none
5ns;
$display("5ns have elapsed\n");

Process Management: wait fork

wait fork waits for all children to terminate.

task wait_fork_demo;

fork
task1(); // start task1 and task2 concurrently
task2();

join_any // terminates when either task1 or task2 does

fork
task3(); // start task3 and task4 concurrently
task4();

join_none;

// task3 and task4 and either task1 or task2 running

wait fork; // wait for all to complete
endtask

Process Management: disable fork

disable fork terminates all its children.

task wait_for_first(output int adr);

fork

wait_device(1, adr); // user-defined task that waits
wait_device(7, adr); // all three started concurrently
wait_device(13, adr);

join_any // terminate when one has arrived

disable fork; // terminate other two

Process control
task run_n_jobs_and_terminate_after_first(int N);
process job[1:N]; // The processes we spawn

for (int j = 1 ; j <= N ; j++)
fork
automatic int k = j; // for each job, k is its number
begin

job[j] = process::self(); // record who I am
... // the job itself

end
join_none // spawn next job immediately

for (int j = 1 ; j <= N ; j++)
wait(job[j] != null); // wait for jobs to start

job[1].await(); // wait for first job to finish

for (int k = 1 ; k <= N ; k++) begin
if (job[k].status != process::FINISHED) // if not finished,
job[k].kill(); // kill it

end

endtask

Semaphores

Mutually-exclusive keys in a bucket. get blocks if not
enough keys are available.
semaphore we_are_there = new; // initialize with no keys

task drive;
fork

begin
100ns; // delay 100ns
we_are_there.put(1); // put a single key in the semaphore
end

begin
$display("Are we there yet?\n");
we_are_there.get(1); // wait for a key
$display("We made it\n");

end
join

endtask

Semaphores and events
event ask, answered;
semaphore answer = new;
int winner; // only valid after answer

task gameshow;
fork

begin // the host
-> ask; // Start the two contestants
answer.put(1); // let them compete
@answered; $display("%d was first\n", winner);

end
begin // contestant one
@ask; // wait for the question
think_about_answer(); answer.get(1); // try to answer first
winner = 1; -> answered; // signal our success

end
begin // contestant two
@ask;
think_about_answer(); answer.get(1);
winner = 2; -> answered;

end
join // Does this behave properly?

endtask

Mailboxes

Possibly bounded semaphore-like queues.
mailbox #(string) mybox = new(2); // capacity set to two

task mailbox_demo;
fork

begin
mybox.put("first letter");
$display("sent first\n");
mybox.put("second letter");
$display("sent second\n");
mybox.put("third letter");
$display("sent third\n");

end
begin
$display("got %s\n", mybox.get);
$display("got %s\n", mybox.get);
$display("got %s\n", mybox.get);

end
join

endtask

Prints
sent first
sent second
got first letter
got second letter
sent third
got third letter

Verification Features

Constrained Random Variables

Manually creating test cases tedious and difficult, yet
appears necessary for functional verification.

Current best practice: Constrained random tests.

SystemVerilog has features for creating such tests.

Constrained Random Variables
class Bus;
rand bit[15:0] addr;
rand bit[31:0] data;

constraint world_align { addr[1:0] = 2’b0; }
endclass

Bus bus = new;

repeat (50) begin
if (bus.randomize() == 1)

$display("addr = %16h data = %h\n",
bus.addr, bus.data);

else
$display("overconstrained: no satisfying values

exist\n");
end

Adding constraints
class Bus;
rand bit[15:0] addr;
rand bit[31:0] data;

constraint world_align { addr[1:0] = 2’b0; }
endclass

Bus bus = new;

repeat (50) begin
if (bus.randomize() with { addr[31] == 0 } == 1)

$display("addr = %16h data = %h\n",
bus.addr, bus.data);

else
$display("overconstrained: no satisfying values

exist\n");
end

Layering constraints

Constraints inherited, can be added in derived classes.

class Bus;
rand bit[15:0] addr;
rand bit[31:0] data;

constraint world_align { addr[1:0] = 2’b0; }
endclass

typdef enum { low, mid, high } AddrType;

class MyBus extends Bus;
rand AddrType atype; // Additional random variable

// Additional constraint on address: still word-aligned
constraint addr_range {

(atype == low) -> addr inside { [0:15] };
(atype == mid) -> addr inside { [16:127] };
(atype == high) -> addr inside { [128:255] };

}
endclass

Using Constraints

Very powerful constraint solving algorithm.
task exercise_bus;
int res;

// Restrict to low addresses
res = bus.randomize() with { atype == low; };

// Restrict to particular address range
res = bus.randomize()

with { 10 <= addr && addr <= 20 };

// Restrict data to powers of two
res = bus.randomize() with { data & (data - 1) == 0 };

// Disable word alignment
bus.word_align.constraint_mode(0);

res = bus.randomize with { addr[0] || addr[1] };

// Re-enable word alignment
bus.word_align.constraint_mode(1);

endtask

Other types of constraints
// Set membership constraints

rand integer x, y, z;
constraint c1 { x inside {3, 5, [9:15], [y:2*y], z}; }

integer fives[0:3] = { 5, 10, 15, 20 };
rand integer v;
constraint c2 { v inside fives; }

// Distribution constraints

rand integer w;
// make w 100 1/8 of time, 200 2/8, 300 5/8
constraint c3 { w dist {100 := 1, 200 := 2, 300 := 5 }; }

// Implication constraints

bit [3:0] a, b;
// force b to 1 when a is 0
constraint c4 { (a == 0) -> (b == 1); }

Many, many more features

Variables that step through random permutations (randc)

If-then-else constraints

Algorithmic constraints over array entries (foreach)

Constraints among multiple objects

Variable ordering constraints (solve..before)

Static constraints controlled by one constraint mode() call

Functions in constraints

Guarded constraints

pre- and post-randomize functions

Random variable disabling

Explicit randomization of arbitrary variables

Random sequence generation from a grammar

Coverage Checks

Once we have generated our tests, how good are they?

Current best practice: monitoring and improving coverage

Coverage: how many cases, statements, values, or
combinations have the test cases exercised?

Covergroup

Defines something whose coverage is to be checked.
Creates bins and tracks whether values ever appeared.

// color: a three-valued variable whose coverage is to be checked
enum { red, green, blue } color;

covergroup g1 @(posedge clk); // Sample at posedge clk
c: coverpoint color;

endgroup

g1 g1_inst = new; // Create the coverage object

At the end of simulation, reports whether color took all
three of its values.

Cross Coverage

May want to monitor combinations of variables.
enum { red, green, blue } color;
bit [3:0] pixel_adr, pixel_offset;

covergroup g2 @(posedge clk);
Hue: coverpoint pixel_hue;
Offset: coverpoint pixel_offset;

// Consider (color, pixel adr) pairs, e.g.,
// (red, 3’b000), (red, 3’b001), ..., (blue, 3’b111)
AxC: cross color, pixel_adr;

// Consider (color, pixel hue, pixel offset) triplets
// Creates 3 * 16 * 16 = 768 bins
all: cross color, Hue, Offset;

endgroup

g2 g2_inst = new; // Create a watcher

Covergroup in classes

Individual coverage of each object of a class.

class xyz;
bit [3:0] x;
int y;
bit z;

covergroup cov1 @z; // At every change of z,
coverpoint x; // sample x
coverpoint y; // and sample y.

endgroup

function new();
cov1 = new; // Create a watcher; variable cov1 implicit

endfunction

endclass

Predicated coverage

May want to selectively disable coverage:

covergroup g4 @(posedge clk);

// check s0 only if reset is true
coverpoint s0 iff(!reset);

endgroup

User-defined bins

May only want to track certain values of a variable.
bit [9:0] a; // Takes values 0–1023

covergroup cg @(posedge clk);

coverpoint a {
// place values 0–63 and 65 in bin a
bins a = { [0:63], 65 };

// create 65 bins, one for 127, 128, ..., 191
bins b[] = { [127:150], [148:191] };

// create three bins: 200, 201, and 202
bins c[] = { 200, 201, 202 };

// place values 1000–1023 in bin d
bins d = {[1000:$] };

// place all other values (e.g., 64, 66, .., 126, 192, ...) in their own bin
bins others[] = default;

}

endgroup

Covering Transitions

May want to check transitions, not just a variable’s values.
bit [3:0] a;

covergroup cg @(posedge clk);
coverpoint a {

// Place any of the sequences 4→5→6, 7→11, 8→11, 9→11, 10→11,
// 7→12, 8→12, 9→12, and 10→12 into bin sa.
bins sa = (4 => 5 => 6), ([7:9],10 => 11,12);

// Create separate bins for 4→5→6, 7→10, 8→10, and 9→10
bins sb[] = (4 => 5 => 6), ([7:9] => 10);

// Look for the sequence 3→3→3→3
bins sc = 3 [* 4];

// Look for any of the sequences 5→5, 5→5→5, or 5→5→5→5
bins sd = 5 [* 2:4];

// Look for any sequence of the form 6→· · ·→6→· · ·→6
// where “· · ·” represents any sequence that excludes 6
bins se = 6 [-> 3];

}
endgroup

Assertions

We have generated our tests, they do a reasonable job
covering the design, but how do we find problems?

Current best practice: Add assertions to the design that
check for unwanted conditions.

Currently, the most effective way to reduce debugging
time: bugs found more quickly, and easier to remedy.

Long used in software, growing use in hardware.

Main challenge in hardware: asserting temporal behavior.
SystemVerilog has constructs specifically for checking
sequences of things.

Immediate Assertions

Simplest assertions check an condition only when they
are executed.

// Make sure req1 or req2 is true if we are in the REQ state
always @(posedge clk)
if (state == REQ)

assert (req1 || req2);

// Same, but report the error ourselves
always @(posedge clk)
if (state == REQ)

assert (req1 || req2)
else
$error("In REQ; req1 || req2 failed (%0t)", $time);

Concurrent Assertions

Concurrent assertions check a property that spans time.
Data sampled at a clock and observed sequence checked.

For example, say we insist that ack must be asserted
between one and three cycles after req is asserted.

property req_ack;
@(posedge clk) // Sample req, ack at rising clock edge

// After req is true, between one and three cycles later,
// ack must have risen.
req ##[1:3] $rose(ack);

endproperty

// Assert that this property holds, i.e., create a checker
as_req_ack: assert property (req_ack);

Concurrent Assertions

Another example: make sure the address strobe is not
true for two consecutive cycles.

property no_two_astr;
@(posedge clk)

// Unless reset is true, make sure astr is
// not true for two cycles in a row.
disable iff (reset) not (astr [*2]);

endproperty
assert property (no_two_astr);

// Non-overlapping implication |=> waits a cycle
property no_two_astr2;
@(posedge clk)
disable iff (reset)
(astr |=> !astr); // When astr is true, astr is false next cycle.

endproperty

assert property (no_two_astr2);

Sequences and Properties

Sequences can be defined in isolation and used
elsewhere.

// The own bus signal goes high in 1 to 5 cycles,
// then the breq signal goes low one cycle later.
sequence own_then_release_breq;
##[1:5] own_bus ##1 !breq

endsequence

property legal_breq_handshake;
@(posedge clk) // On every clock,
disable iff (reset) // unless reset is true,
// once breq has risen, own bus should rise and breq should fall.
$rose(breq) |-> own_then_release_breq;

endproperty

assert property (legal_breq_handshake);

Sequences (partial syntax)

seq :=

expr Expression over signals

expr [* int-or-range] Consecutive repetition

expr [= int-or-range] Non-consecutive repetition

expr [-> int-or-range] Goto repetition

seq ## int-or-range seq ... Delay between sequences

seq or seq Either true

seq and seq Both true

seq intersect seq Both true, end simultaneously

seq within seq Second starts/ends within first

Properties (partial syntax)

prop :=

seq Sequence

prop or prop Either holds

prop and prop Both hold

not prop Does not hold

seq |-> prop Prop holds when sequence ends

seq |=> prop Prop holds cycle after sequence ends

if (expr) prop

[else prop] If-then-else

SystemVerilog: Summary

Huge language that reflects changing design
methodologies:

Switch-level charge-transfer modeling (deprecated)

Gate-level structural modeling

RTL modeling

High-level software-like modeling

Assertions, random simulation, and coverage

Will it succeed?

Maybe.

Substantial industrial support (Cadence, Synopsys).

More of an incremental change than SystemC.

Reasonable, fairly clear, synthesizable subset.

Verilog, with all its flaws, has proven its worth.

Large language, but still fairly succinct.

Does it support the right set of methodologies?

