# **Built-in Self-Test (BIST)**

- Introduction
- Test Pattern Generation
- Test Response Analysis
- BIST Architectures
- Scan-Based BIST

# **Built-in Self-Test (BIST)**

- Capability of a circuit to test itself
- On-line:
  - Concurrent : simultaneous with normal operation
  - Nonconcurrent : idle during normal operation
- Off-line:
  - Functional : diagnostic S/W or F/W
  - Structural : LFSR-based
- We deal primarily with structural off-line testing here.

#### **Basic Architecture of BIST**



- TPG: Test pattern generator
- ORA Output response analyzer

# **Glossary of BIST**

- TPG Test pattern generator
- PRPG pseudorandom pattern generator (Pseudorandom number generator)
- SRSG Shift register sequence generator (a single output PRPG)
- ORA Output response analyzer
- SISR Single-input signature register
- MISR Multiple-input signature register
- BILBO Built-in logic block observer

# **Built-in Self Testing**

- Test pattern generation
  - Exhaustive
  - Pseudoexhaustive
  - Pseudorandom
- Test response compression
  - One's count
  - Transition count
  - Parity checking
  - Syndrome checking
  - Signature analysis

#### **Test Pattern Generation for BIST**

- Exhaustive testing
- Pseudorandom testing
  - Weighted and Adaptive TG
- Pseudoexhaustive testing
  - Syndrome driver counter
  - Constant-weight counter
  - Combined LFSR and shift register
  - Combined LFSR and XOR
  - Cyclic LFSR

### **Exhaustive Testing**

- Apply all 2<sup>n</sup> input vectors, where n = # inputs to CUT
- Impractical for large n
- Detect all detectable faults that does not cause sequential behavior
- In general not applicable to sequential circuits
- Can use a counter or a LFSR for pattern generator

# Linear Feedback Shift Register (LFSR)

• Example



# Two Types of LFSRs

• Type 1: External type



• Type 2: Internal type



# Mathematical Operations over GF(2)

- Multiplication (•)
- Addition ( 
   ⊕ or simply +)

Example:  

$$C_1 = 0, \quad C_2 = 1, \quad C_3 = 1$$
  
 $a_{-1} = 0, \quad a_{-2} = 1, \quad a_{-3} = 1,$   
if  
 $a_0 = a_{-1} \bullet c_1 + a_{-2} \bullet c_2 + a_{-3} \bullet c_3$   
then  
 $a_0 = 0 + 1 + 1 = 0$ 

# Analysis of LFSR using Polynomial Representation

- A sequence of binary numbers can be represented using a generation function (polynomial)
- The behavior of an LFSR is determined by its initial "seed" and its feedback coefficients, both can be represented by polynomials.

#### **Characteristic Polynomials**

- *a* 0, *a* 1,..., *a m*,... : sequence of binary numbers.
- Generating function :  $G(x) = a_0 + a_1x + a_1x^2 + ... + a_mx^m + ... = \sum_{m=0}^{\infty} a_mx^m$

• Let 
$$\{a_m\} = a_0, a_1, ..., a_m, ...$$

be output sequence of an LFSR of type1

$$\implies a_m = \sum_{i=1}^n C_i * a_{m-i}$$

• Let initial state be  $\mathcal{A}_{-1}, \mathcal{A}_{-2}, ..., \mathcal{A}_{-n}$ 

#### Denominator

# $P(x) = 1 + c_1 * x + c_2 * x^2 + ... + c_n * x^n$ is called the characteristic polynomial of the LFSR



# LFSR Theory

- Definition: If period p of sequence generated by an LFSR is  $2^n 1$ , then it is a maximum length sequence
- Definition: The characteristic polynomial associated with a maximum length sequence is a primitive polynomial
- <u>Theorem</u>: # of primitive polynomials for an n-stage LFSR is given by

$$\lambda_2(n) = \phi(2^n - 1) / n$$

where 
$$\phi(n) = n * \prod_{P \neq n} (1 - \frac{1}{P})$$

## **Primitive Polynomial**

• # primitive polynomials of degree n



#### Some primitive polynomials

| 1:  | 0 |   |   |   | 13: | 4  | 3  | 1 | 0 | 25: | 3  | 0  |   |   |
|-----|---|---|---|---|-----|----|----|---|---|-----|----|----|---|---|
| 2:  | 1 | 0 |   |   | 14: | 12 | 11 | 1 | 0 | 26: | 8  | 7  | 1 | 0 |
| 3:  | 1 | 0 |   |   | 15: | 1  | 0  |   |   | 27: | 8  | 7  | 1 | 0 |
| 4:  | 1 | 0 |   |   | 16: | 5  | 3  | 2 | 0 | 28: | 3  | 0  |   |   |
| 5:  | 2 | 0 |   |   | 17: | 3  | 0  |   |   | 29: | 2  | 0  |   |   |
| 6:  | 1 | 0 |   |   | 18: | 7  | 0  |   |   | 30: | 16 | 15 | 1 | 0 |
| 7:  | 1 | 0 |   |   | 19: | 6  | 5  | 1 | 0 | 31: | 3  | 0  |   |   |
| 8:  | 6 | 5 | 1 | 0 | 20: | 3  | 0  |   |   | 32: | 28 | 27 | 1 | 0 |
| 9:  | 4 | 0 |   |   | 21: | 2  | 0  |   |   | 33: | 13 | 0  |   |   |
| 10: | 3 | 0 |   |   | 22: | 1  | 0  |   |   | 34: | 15 | 14 | 1 | 0 |
| 11: | 2 | 0 |   |   | 23: | 5  | 0  |   |   | 35: | 2  | 0  |   |   |
| 12: | 7 | 4 | 3 | 0 | 24: | 4  | 3  | 1 | 0 | 36: | 11 | 0  |   |   |

# Primitive Polynomial (Cont.)

- Characteristic of maximum-length sequence:
  - Pseudorandom though deterministic and periodic
  - # 1's = # 0's + 1
- Can be used as a (pseudo)-random or exhaustive number generator.



•  $2^4 - 1 = 15$  "near" complete patterns are generated

# LFSR Example (Cont.)

• To generate 2<sup>n</sup> patterns using LFSR



# What to Do if 2<sup>n</sup> is too Large?

- Using "pseudorandom"
   e.g. generate 2<sup>32</sup> pattern only
- Partitioning



Built-in self test.20

• Using pseudo-exhaustive

# **Constant Weight Patterns** (for pseudoexhaustive testing)

- *T*, set of binary *n*-tuples, exhaustively covers all *k*-subspaces if for all subsets of *k* bits positions, each of the 2<sup>k</sup> binary patterns appears at least once in *T*, where

   *k* ≤ *n*
- Example:

$$T = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} n = 3 \\ |T| = 4 \\ k = 2 \end{array}$$

 $\Rightarrow$  *T* can be a pseudoexhaustive test for a (n,w)-CUT if  $k \ge n$ 

# **Constant Weight Patterns (Cont.)**

- A binary *n*-tuple has weight *k* if it contains exactly *k* 1's
- $\implies$  There are  $C_k^n$  binary *n*-tuples having weight *k*.
- <u>Theorem</u>: Given *n* and *k*, *T* exhausitvely covers all binary *k*-subspaces if it contains all binary *n*-tuples of weight(s) *w* such that *w=c mod (n-k+1)* for some integer *c*, where  $\begin{array}{c}
  0 \le c \le n-k, \\
  0 \le w \le n
  \end{array}$

## **Compression Techniques**

- Bit-by-bit comparison is inefficient
- Compress information into "signature"



#### Compression Techniques to be Discussed

- Ones Count
- Transition Count
- Parity Checking
- Syndrome Checking
- Signature Analysis

## **Practical Compression Techniques**

- Easy to implement, part of BIST logic
- Small performance degradation
- High degree of compaction
- No or small aliasing errors
- Problems:
  - 1. Aliasing error:

signature (faulty ckt) = signature (fault-free ckt)

- 2. Reference (good) signature calculation:
  - ⇒Simulation
  - ⇔Golden unit
  - ⇒Fault tolerant

#### **Ones-count Compression**

- C: single-output circuit
- **R**: output response  $R = r_1 r_2 \dots r_m$
- 1C(R) = # ones in  $R = \sum r_i$



## **Transition-count Compression**

$$TC (R) = \sum_{i=1}^{m} r_i \oplus r_{i+1}$$



- Does not guarantee the detection of single-bit errors
- Prob. (single-bit error masked)  $= \frac{m-2}{2m}$
- Prob. (masking error)  $\rightarrow (\pi m)^{-2}$

# **Parity-check Compression**



- Detect all single bit errors
- All errors consisting of odd number of bit errors are detected
- All errors consisting of even number of bit errors are masked
- Prob. (error masked)  $\approx \frac{1}{2}$

# Syndrome Checking

- Apply random patterns.
- Count the probability of 1.
- The property is similar to that of ones count.



# **Signature Analysis**

- Based on linear feedback shift register (LFSR)
- A linear ckt. composed of
  - ⇒ unit delay or D FFs
  - ⇒ Modulo-2 scalar multipliers or adders

+/-
 0
 1
 
$$*$$
 0
 1

 0
 0
 1
 0
 0
 0
 0

 1
 1
 0
 1
 0
 1
 0
 1

• Linear ckt.:

**Response of linear combination of inputs** 

 Linear combination of responses of individual inputs

$$I + I_2) = I + I_2$$

## **Use LFSR as Signature Analyzer**

• Single-input LFSR



• Initial state x = 0

x)

Final state

$$x$$
) : The remainder, or the signature

 $\implies \frac{x}{x} = x + \frac{x}{x} \text{ or } x = x + x$ 

# Signature Analyzer (SA)

#### Input sequence:



1 1 1 1 0 1 0 1 (8 bits)  $G(x) = x^7 + x^6 + x^5 + x^4 + x^2 + 1$ 



**Register contents** Time Input stream **Output stream** 12345 10101111 **Initial state** 00000 0 1010111 10000 5 101 01111 6 10 00010 7 01 00001 8 Remainder 101 001 Quotient  $Q(x) = 1 + x^2$ **Remainder**  $R(x) = x + x^4$ Built-in self test.32

# Signature Analyzer (SA) (Cont.) $x x + x + x^2 + 1$ $x x^{2} + 1$ Х $x + x + x^{5} + 1$

 $x) \qquad x) + \quad x) = x + x + x + x + x^{2} + 1 = \quad x)$ 

# Multiple-input Signature Register (MISR)



• Implementation:





## **Performance of Signature Analyzer**

• For a test bit stream of length m :

# possible response = 2<sup>m</sup>, of which only one is correct

The number of bit stream producing a specific signature is

$$\frac{2}{2^n} = 2^{-n}$$

# Performance of Signature Analyzer (Cont.)

Among these stream , only one is correct.

$$_{SA}(|,n) = \frac{2^{m-n}-1}{2^m-1} \cong 2^{-n}$$

• If n=16, then  $1 - {}^{-16}$ ) 1 % = % of erroneous response are detected. (Note that this is not % of faults !)

# Generic Off-line BIST Architecture

- Categories of architectures
  - Centralized or Distributed
  - Embedded or Separate BIST elements
- Key elements in BIST architecture
  - Circuit under test (CUTs)
  - Test pattern generators (TPGs)
  - Output-response analyzers (ORAs)
  - Distribution system for data transmission between TPGs, CUTs and ORAs
  - BIST controllers

#### **Centralized/ Separate BIST**

#### Chip, board, or system



### **Distributed / Separate BIST**

#### Chip, board, or system



### **Distributed / Embedded BIST**

#### Chip, board, or system



# Factors Affecting the Choice of BIST

- Degree of test parallelism
- Fault coverage
- Level of packaging
- Test time
- Complexity of replaceable unit
- Factory and field test-and-repair strategy
- Performance degradation
- Area overhead

#### **Specific BIST Architectures**

- Ref. Book by Abramovici, Breuer and Friedman
- Centralized and Separate Board-Level BIST (CSBL)
- Built-in Evaluation and Self-Test (BEST)
- Random-Test Socket (RTS)
- LSSD On-Chip Self-Test (LOCST)
- Self-Testing Using MISR and Parallel SRSG (STUMPS)

# Specific BIST Architectures (Cont.)

- Concurrent BIST (CBIST)
- Centralized and Embedded BIST with Boundary Scan (CEBS)
- Random Test Data (RTD)
- Simultaneous Self-Test (SST)
- Cyclic Analysis Testing System (CATS)
- Circuit Self-Test Path (CSTP)
- Built-In Logic-Block Observation (BILBO)

# Built-In Logic Block Observation (BILBO)<sup>[1]</sup>

- Distributed
- Embedded
- Combinational "Kernels"
- Chip level
- "Clouding" of circuit
- Registers based description of circuit
- BILBO registers
- [1]. B. Konemann, et al., 'Built-In Logic\_Block Observation Technique," Digest of papers 1979 Test Conf., pp.37-41, Oct., 1979



- 1 0 MISR (input \* constant \* LFSR)
- 1 1 parallel load (normal operation)

# **Applications of BILBO**

#### • Bus-oriented structure



# **Applications of BILBO (Cont.)**

Pipeline-oriented
 structure



#### **Problems with BILBO**





MISR or TPG ?

R2 ?

 $\Rightarrow$  Using CBILBO

# Transistor Level Implementation of CBILBO



# **Combination of LFSR and Scan Path**



 Problem: Some hard-to-detect faults may never be exercised





# **Solutions:**

- Exhausting testing
- Weighted random testing
- Mixed mode vector pattern generation
  - Pseudorandom vectors first
  - Deterministic tests followed
  - Do not consider the fact that the test vectors are given in a form of testcubes with many unspecified inputs.
- 4. Reseeding
  - Change the seeds as needed
- 5. Reprogram the characteristic polynomial
- 6. Combination of two or more of the above methods