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Designing a synchronous finite state machine (FSM) is a common task for a digital
logic engineer. This paper discusses a variety of issues regarding FSM design using
Synopsys Design Compiler�. Verilog� and VHDL coding styles are presented, and
different methodologies are compared using real-world examples.

A finite state machine has the general structure shown in Figure 1. The current state
of the machine is stored in the state memory, a set of n flip-flops clocked by a single
clock signal (hence “synchronous” state machine). The state vector (also current
state, or just state) is the value currently stored by the state memory. The next state
of the machine is a function of the state vector and the inputs. Mealy outputs are a
function of the state vector and the inputs, while Moore outputs are a function of the
state vector only.
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Figure 1. State Machine Structure



State Machine Design Techniques for Verilog and VHDL

2 Synopsys Journal of High-Level Design         September 1994�

current state

clock

outputs

inputs

STATE
MEMORY

LOGIC

Figure 2. Alternative State Machine Structure

Another way of organizing a state machine uses only one logic block, as shown in
Figure 2.

Basic HDL Coding
The logic in a state machine is described using a case  statement or the equivalent
(e.g., if-else ). All possible combinations of current state and inputs are enumer-
ated, and the appropriate values are specified for next state and the outputs.

A state machine may be coded as in Figure 1 using two separate case  statements,
or, following Figure 2, using only one. A single case  statement may be preferred
for Mealy machines where the outputs depend on the state transition rather than just
the current state.

The listings in the Appendix show examples of both techniques. prep3 uses a single
case  whereas prep4 is coded with a separate logic block that generates the outputs.

Here are a few general rules to follow:

� Only one state machine per module

� Keep extraneous logic at a minimum (for example, try not to put other code in
the same module as the FSM—this is especially important if you use extract )

� Instantiate state flip-flops separately from logic

State Assignment
Usually the most important decision to make when designing a state machine is what
state encoding to use. A poor choice of codes results in a state machine that uses too
much logic, or is too slow, or both.
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Many tools and techniques have been developed for choosing an “optimal” state as-
signment. Typically such approaches use the minimum number of state bits (Ref. 1)
or assume a two-level logic implementation such as a PLA (Ref. 2). Only recently
has work been done on the multi-level logic synthesis typical of gate array design
(Ref. 3).

Highly Encoded State Assignment

A highly encoded state assignment will use fewer flip-flops for the state vector;
however, additional logic will be required simply to encode and decode the state.

One-Hot Encoding

In one-hot encoding, only one bit of the state vector is asserted for any given state.
All other state bits are zero. So if there are n states, then n state flip-flops are re-
quired. State decode is simplified, since the state bits themselves can be used directly
to indicate whether the machine is in a particular state. No additional logic is re-
quired.

History of One-Hot Encoding

The first discussion of one-hot state machines was given by Huffman (Refs. 4 and
5). He analyzed asynchronous state machines implemented with electromechanical
relays, and introduced a “one-relay-per-row” realization of his flow tables.

Why Use One-Hot?

There are numerous advantages to using the one-hot design methodology:

� One-hot state machines are typically faster. Speed is independent of the number of
states, and instead depends only on the number of transitions into a particular state.
A highly encoded machine may slow dramatically as more states are added.

� You don’t have to worry about finding an “optimal” state encoding. This is par-
ticularly beneficial as the machine design is modified, for what is “optimal” for
one design may no longer be best if you add a few states and change some oth-
ers. One-hot is equally “optimal” for all machines.

� One-hot machines are easy to design. HDL code can be written directly from the
state diagram without coding a state table.

� Modifications are straightforward. Adding and deleting states, or changing ex-
citation equations, can be implemented easily without affecting the rest of the
machine.

� Easily synthesized from VHDL or Verilog.
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� There is typically not much area penalty over highly encoded machines.

� Critical paths are easy to find using static timing analysis.

� It is easy to debug. Bogus state transitions are obvious, and current state display
is trivial.

Almost One-Hot Encoding

If a machine has two groups of states with almost identical functionality (e.g., for
handling read and write access to a device), an “almost one-hot” encoding may be
used where a single flag or state bit is used to indicate which of the two state groups
the FSM is currently in. The remainder of the state bits are encoded one-hot. Thus to
fully decode a given state we must look at two state bits. This scheme has most of
the benefits of a pure one-hot machine but with less logic.

Although the flag bit is technically part of the state vector, it may be useful to con-
sider the flag flip-flop output pin as just another input to the machine (and likewise
the flag flip-flop input pin is a machine output). In the above example the flag might
have a name like RW.

Another “almost one-hot” encoding uses the all-zeros or “no-hot” encoding for the
initial state. This allows for easy machine reset since all flip-flops go to zero. This
may be especially useful when a synchronous reset is needed.

Error Recovery and Illegal States

It is sometimes argued that state machines should have the minimum number of state
flip-flops (i.e., a highly encoded state assignment) because this minimizes the num-
ber of illegal states. The hope is that if the machine malfunctions and makes an ille-
gal transition, at least the erroneous destination will be a legal state, and the machine
can recover.

This often turns out not to be the case. Just because the machine ends up in a “legal”
state doesn’t mean that it can recover from the error. Consider a WAIT state that the
machine loops in until a particular signal is received. If the WAIT state is entered
accidentally then the machine probably hangs.

Perhaps to facilitate error recovery the maximum number of state flip-flops should be
used (i.e., one-hot). If a bad transition is made, then it will almost certainly put the
machine in an illegal state (since the legal states are a small fraction of all possible
state vector values). This illegal state can be detected by external logic, which may
then take appropriate action (e.g., reset the FSM).
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Coding State Transitions
State transitions are coded using a case  structure to specify the next state values.

Highly Encoded Machine

For a highly encoded machine the case  statement uses the state vector as the ex-
pression. In Verilog the case  items are typically parameters that specify the state
encoding for each state:

case (state)
    // synopsys parallel_case full_case

    START:
      if (in == 8’h3c)
          next_state = SA ;
      else
          next_state = START ;

    SB:
      if (in == 8’haa)
          next_state = SE ;
      else
          next_state = SF ;

    SC:
      next_state = SD ;

See Listing 1 and Listing 3 for more examples. Using parameter  and the
full_case  directive in Verilog, we can specify arbitrary state encodings and still
have efficient logic.

In VHDL the state encodings are declared as an enumerated type  (see Listing 5).
The actual numeric value of the enumerated elements is predefined by the VHDL
language: the first element is 0, then 1, 2, etc. It is difficult to define arbitrary encod-
ings in the VHDL language.1

To remedy this problem Synopsys has provided the attribute enum_encoding ,
which allows you to specify numeric code values for the enumerated types. Unfortu-
nately, not all VHDL simulators will implement this vendor-specific extension,
which means your behavioral and gate simulations will use different encodings.

�� ���� ����� ����� ����� �� ��
� �	� ���� ���
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One-Hot Machine

For one-hot encoding you need only look at one bit to determine if you are in a par-
ticular state. Thus the  statement in Verilog looks as follows (see Listing 2 for more):

next_state = 8’b0 ;

case (1’b1)
    // synopsys parallel_case full_case

    state[START]:
        if (in == 8’h3c)
            next_state[SA] = 1’b1 ;
        else
            next_state[START] = 1’b1 ;

    state[SB]:
        if (in == 8’haa)
            next_state[SE] = 1’b1 ;
        else begin
            next_state[SF] = 1’b1 ;

    state[SC]:
        next_state[SD] = 1’b1 ;

The  statement looks at each state bit in turn until it finds the one that is set. Then
one bit of next_state  is set corresponding to the appropriate state transition. The
remaining bits of next_state are all set to zero by the default statement

  next_state = 8’b0 ;

Note the use of parallel_case  and full_case directives for maximum effi-
ciency. The default  statement should not be used during synthesis. However
default  can be useful during behavioral simulation, so use compiler directives to
prevent Design Compiler from seeing it:

// synopsys translate_off
default: $display(“He’s dead, Jim.”) ;
// synopsys translate_on

For VHDL we use a sequence of if  statements (see Listing 6 for more):

next_state <= state_vec’(others=>’0’);

if state(1) = ’1’ then
  if (Iin(1) and Iin(0)) = ’1’ then
    next_state(0) <= ’1’;
  else
    next_state(3) <= ’1’;
  end if ;
end if ;
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if state(2) = ’1’ then
  next_state(3) <= ’1’ ;
end if;

As before, all the bits of next_state  are set to zero by the default assignment, and
then one bit is set to 1, indicating the state transition.

For both the Verilog and VHDL one-hot machines, the behavioral simulation will
exactly agree with the post-synthesis gate-level simulation.

Almost One-Hot Machine

The only difference from the pure one-hot machine is that you may look at more
than one state bit to determine the current state:

case (1’b1)
    // synopsys parallel_case full_case

    state[START] && state[RW]:
        if (in == 8’h3c)
            next_state[SA] = 1’b1 ;
        else
            next_state[START] = 1’b1 ;

Outputs
Outputs are coded in a manner similar to the next state value. A case  statement (or
the equivalent) is used, and the output is assigned the appropriate value depending
on the particular state transition or state value.

If the output is a don’t care for some conditions, then it should be driven unknown
(x) . Design Compiler will use this don’t care information when optimizing the
logic.

Assigning the output to a default value prior to the case  statement will ensure that
the output is specified for all possible state and input combinations. This will avoid
unexpected latch inference on the output. Also, the code is simplified by specifying a
default value that may be overridden only when necessary. The default value may be
1, 0, or x.

It is best to have a default of 0 and occasionally set it to 1 rather than the reverse
(even if this requires an external inverter). Consider an output that is 1 in a single
state, and 0 otherwise. Design Compiler will make the output equal to the one-hot
state bit for that state. Now consider an output that is 0 in only one state, and 1
otherwise. The output will be driven by an OR of all the other state bits! Using
set_flatten -phase true  will not help.
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For a one-hot machine you can use the state bits directly to create outputs that are
active in those states:

myout = state[IDLE] || state[FOO] ;

Sometimes it is easier to specify an output value as a function of the next state rather
than of the current state.

Registered Outputs
Outputs can be registered. A simple D flip-flop may be used, but a JK functionality
can be implemented as well. The output of the flip-flop is fed back as an input to the
machine. The default next output value is the current flip-flop output:

next_myout = myout ; /* default */

With no further assignment the value will hold, or we can set, clear, and toggle:

next_myout = 1’b1 ; /* set */
next_myout = 1’b0 ; /* clear */
next_myout = !myout ; /* toggle */

This JK-type output is especially useful for pseudo-state flag bits (see the previous
section titled “Almost One-Hot Encoding”).

Inputs

Asynchronous Inputs
Sometimes a state machine will have an input that may change asynchronously with
respect to the clock. Such an input must be synchronized, and there must be one and
only one synchronizer flip-flop.

The easiest way to accomplish this is to have the sync flip-flop external to the state
machine module, and place a large2 set_input_delay  on that input to allow time
for the sync flip-flop to settle.

If the sync flip-flop is included in the same module as the FSM, then you can place
an input delay on the internal flip-flop output pin. Unfortunately this requires the
flip-flop to be mapped prior to compiling the rest of the machine.

Rather than hand-instantiating the flip-flop we can use register inference as usual
and simply map that one flip-flop before compiling. The following script will map
the flip-flop:

�� #
���� ����  ���� ������� �� "��� ����� ������� ��� �!�� ������� �� "��� ��	�  ����� ���� ��� ����������"
������������� �� ����� ����$������ ��" ��� �� �����



State Machine Design Techniques for Verilog and VHDL

9Synopsys Journal of High-Level Design         September 1994�

/* get the name of the unmapped flip-flop */
theflop = signal_to_be_synced + ”_reg”
/* group it into a design by itself */
group -cell flip-flop -design temp find(cell,theflop)
/* remember where you are */
top = current_design
/* push into the new design */
current_design = temp
/* set_register_type if necessary */
/* map the flip-flop */
compile -map_effort low -no_design_rule
/* pop back up */
current_design = top
/* ungroup the flip-flop */
ungroup -simple_names find(cell,flop)
/* clean up */
remove_design temp
remove_variable top
/* now set the internal delay */
set_input_delay 10 -clock clk find(pin,theflop/Q*)
/* now you can compile the fsm */

The  will put an implicit dont_touch  on the sync flip-flop.

If your ASIC vendor has a “metastable resistant” flip-flop then use
set_register_type  to specify it.

Unknown Inputs

A related problem occurs when an input is valid at certain well-defined times, and is
otherwise unknown (and possibly asynchronous). Even if your code is written to
only use this signal when you know it to be stable, Design Compiler may create opti-
mized logic whereby changes in this input may cause glitches even when you are not
“looking” at it.3

The only way to prevent this problem is to gate the input signal with an enable. This
enable signal is usually a simple decode of the state vector; thus the gate output is
non-zero only when the enable is true and will never be unknown. The gate output is
used in place of the input signal in your FSM.

To implement this gating function, an AND gate (or other suitable logic) must be
hand-instantiated and protected with dont_touch  during compile.

�� �� ��
���� ���� �� ����� ��� ����
� �� ��� 
� 
 ��� ������� �� ��� 
�
 ������ �� ��� ��� 
�� ���
� ���� ������
�������� 
������ ��� ��� ������ ���� �
�� ��� �
�� �
��� ���
����� �� ��� ������ �
���� 	�������
��� � �������� �� ���
������ �
 ������������ �
��� �������� �� ��� ��� �������
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Rather than instantiating a specific gate from your vendor library, the gate can be
selected from the Synopsys GTECH library. This keeps your HDL code vendor-
independent. In Verilog this is done as follows:

  GTECH_AND2 myand (
    .Z(signal_qualified),
    .A(signal_in), .B(enable)) ;

and for VHDL

  myand : GTECH_AND2 port map(
     Z => signal_qualified,
     A => signal_in, B => enable) ;

Your compile script should contain

  set_map_only find(cell,myand) ;

which prevents logic-level optimization during the compile. Design Compiler will
attempt to map the gate exactly in the target library.

Sometimes this technique will create redundant logic in your module. This can cause
a problem when generating test vectors, because some nodes may not be testable.

Verilog users may be tempted to use gate primitives:

and myand (signal_qualified, signal_in, enable) ;

making the reasonable assumption that this will initially map to a GTECH_AND2 as
the Verilog is read in. Then set_map_only  could be used as above. Unfortunately
this does not work; gate primitives do not always map to a GTECH cell. Perhaps a
future Synopsys enhancement will allow this.

In order to support behavioral simulation of your HDL, a behavioral description of
the GTECH gates must be provided. Synopsys supplies such a library only for
VHDL users. One hopes that a similar Verilog library will be provided in a future
release.

FSM Extract
Design Compiler directly supports finite-state machines using the extract  com-
mand. extract  gives you the ability to change your state encodings during com-
pile, thus allowing you to experiment with different FSM implementations (Ref. 7).

To use extract  you must tell Design Compiler where your state vector is, and also
any state names and encodings you may have. The easiest way to do this is with at-

tribute state_vector  in VHDL and via the enum code  and state_vector

synthetic comments in Verilog. (See Listing 1, Listing 3, and Listing 5 for exam-
ples.)
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extract  puts your design into a two-level PLA format before doing any optimiza-
tions and transformations. So if your design cannot be flattened, you cannot use ex-

tract .

Synopsys provides the group -fsm  command to isolate your state machine from
any other logic in its module. Unfortunately, the newly-created ports have Synopsys
internal names like n1234 . The resulting state table is difficult to understand. There-
fore to efficiently use extract  you should avoid group -fsm.  This means you
can have no extraneous logic in your module.

Your design must be mapped to gates before you can use extract . Synopsys sug-
gests that you run compile  on your design after reading in the HDL and before ap-
plying any constraints:

compile -map_effort low -no_design_rule

This isn’t really necessary since most of your design will already be implemented in
generic logic after reading the HDL, and extract  can handle that fine. What you
really must do is

  replace_synthetic

to map all synthetic library elements into generic logic, followed by

  ungroup -all -flatten

to get rid of any hierarchy. This will be considerably faster than using compile .

After using extract , always do check_design  to get a report on any bad state
transitions.

Advantages
You can get very fast results using extract  with set_fsm_coding_style

one_hot .

FSM design errors can be uncovered by inspecting the extracted state table.

Disadvantages
The world isn’t a PLA, but extract  treats your design like one.

Unless you are truly area constrained, the only interesting coding style that extract

supports is one-hot. You might as well code for one-hot to begin with (see “One-Hot
Machine” in the Coding State Transitions section of this paper).

You can be happily using extract , but one day modify your HDL source and then
discover that you can no longer flatten the design. This precludes any further use of
extract .
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Compile scripts are more verbose and complicated.

Timing Constraints
When applying timing constraints, you should use the real clock only for the state
flip-flops. Virtual clocks are then used to specify the input and output delays:

clk_period = 10
clk_rise   = 0
clk_fall   = clk_period / 2.0
/* create the clocks */
create_clock find(port,clk) \
   -period clk_period \
   -waveform {clk_rise clk_fall}
create_clock -name inclk \
   -period clk_period \
   -waveform {clk_rise clk_fall}
create_clock -name outclk \
   -period clk_period \
   -waveform {clk_rise clk_fall}
/* set the constraints */
set_input_delay  clk_fall \
   -clock inclk  find(port,in)
set_output_delay clk_fall \
   -clock outclk find(port,out)

This allows a clock skew to be applied to the state flip-flops without affecting the
input and output timing (which may be relative to an off-chip clock, for example).

If you have any Mealy outputs, you generally need to specify them as a multicycle
path using

set_multicycle_path -setup 2 \
  -from all_inputs() \
  -to   all_outputs()
set_multicycle_path -hold 1 \
  -from all_inputs() \
  -to   all_outputs()

Sometimes it is useful to group paths into four categories: input to state flip-flop,
state flip-flop to output, input to output (Mealy path), and state flip-flop to state flip-
flop. With the paths in different groups, they can be given different cost function
weights during compile.

If you use separate clocks as suggested above, you might be tempted to try this:

/* put all paths in default group */
group_path -default -to \
  { find(clock) find(port) find(pin) } \
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  > /dev/null
/* now arrange them */
group_path -name theins \
  -from find(clock,inclk) \
  -to   find(clock,clk)
group_path -name theouts \
  -from find(clock,clk) \
  -to   find(clock,outclk)
group_path -name thru \
  -from find(clock,inclk) \
  -to   find(clock,outclk)
group_path -name flop \
  -from find(clock,clk) \
  -to   find(clock,clk)

Unfortunately, this doesn’t work! It seems that whenever you specify a clock as a
startpoint or endpoint of a path, all paths with that clock are affected. You end up
with the same path in more than one group.4 So instead of using clocks, we can
specify pins:

group_path -name theins \
  -from all_inputs() \
  -to   all_registers(-data)
group_path -name theouts \
  -from all_registers(-clock_pins) \
  -to   all_outputs()
group_path -name thru \
  -from all_inputs() \
  -to   all_outputs()
group_path -name flop \
  -from all_registers(-clock_pins)
  -to   all_registers(-data)

This works fine. You do get the paths where you want them.5

Regardless of the path groupings, we can specify timing reports that give us the in-
formation we want:

report_timing \
  -from all_inputs() \
  -to   all_registers(-data)
report_timing \
  -from all_registers(-clock_pins) \
  -to   all_outputs()
report_timing \

�� 	�������! ���� ���� �� �� �� �� � ������ ��������

�� 
��� ����� ���� �� !�� �����! ����� ������ �� �������� ����� �� ��� ����"����� ��� ������ ������ ��� ������� ��"
���� �������� �����������! ������ ��� ����"���� ��� ����� ���� �� ��� ���� ����������
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  -from all_inputs() \
  -to   all_outputs()
report_timing \
  -from all_registers(-clock_pins)   \
  -to   all_registers(-data)

One-Hot Timing Reports

A further advantage of one-hot state assignment is that critical path timing reports
can be directly related to the state diagram. Consider the following timing report:

 Point                         Path
 -------------------------------------
 clock clk (rise edge)         0.00
 clock network delay (ideal)   0.00
 state_reg[0]/CP (FD2)         0.00 r
 state_reg[0]/QN (FD2)         5.25 f
 U481/Z (NR2)                 11.39 r
 U505/Z (IV)                  12.21 f
 U474/Z (NR2)                 14.14 r
 U437/Z (EO1)                 16.23 f
 U469/Z (AO3)                 18.11 r
 U463/Z (EO1)                 20.21 f
 U480/Z (AO7)                 22.08 r
 U440/Z (AO2)                 23.24 f
 U495/Z (ND2)                 24.65 r
 state_reg[1]/D (FD2)         24.65 r
 data arrival time            24.65

If this is a highly encoded machine, then it is very difficult to determine which state
transition this path corresponds to. Worse, this may actually be a false path.

In contrast, if this is a one-hot machine, then this transition must start in state[0] be-
cause flip-flop state_reg[0]  is set (pin state_reg[0]/QN  falling), and must
end in state[1] because flip-flop state_reg[1]  is being set (state_reg[1]/D  is
rising).

Now that the particular transition has been identified, it may be recoded to speed up
the path.

When using extract , the state flip-flops for one-hot machines are given the names
of the corresponding states. This makes path analysis particularly straightforward.
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Synthesis Strategies
If you are using extract , there aren’t many useful compile options. Flattening is
ignored, so all you can do is turn structuring on and off.

For a one-hot machine, flattening may provide some benefit. As usual, the improve-
ments vary widely depending on your particular application (Ref. 8)

One interesting technique to experiment with is pipeline retiming with the
balance_registers  command. This is intended primarily for pipelined data-
paths, but it does work with a single bank of flip-flops, as in a state machine. The
drawbacks are:

� The flip-flops cannot have asynchronous resets

� Results may be affected by

   compile_preserve_sync_resets = ”true”

� State encodings change in unpredictable ways

Compile Results
Four sample state machines were used to compare and illustrate the techniques out-
lined in this paper. The results are shown in Table 1.

Table 1. Compile results for Sample State Machines

����
�� 	�� ���
��� ����� ����
�� 	�� �

��� ����

Slack
(ns) Area

Run Time
(minutes)

Slack
(ns) Area

Run Time
(minutes)

prep3

8 states, 12 transitions, 8 inputs, 8 outputs

coded for extract

binary –5.41 228 –8.84 166

one_hot –5.19 227 –11.59 196

auto_3 –5.95 214 < 2 –7.29 164 < 2

auto_4 –5.01 234 –8.55 159
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����
�� 	�� �

��� ��������
�� 	�� ���
��� �����

Run Time
(minutes)Area

Slack
(ns)

Run Time
(minutes)Area

Slack
(ns)

prep3 (continued)

8 states, 12 transitions, 8 inputs, 8 outputs

auto_5 –5.43 229 –8.55 159

no extract (binary) –4.56 216 –12.22 169

coded for one_hot

structure –3.86 221 –12.23 194

flatten –4.35 341 < 2 –9.84 258 < 2

flatten & structure –4.38 239 –11.93 193

prep4

16 states, 40 transitions, 8 inputs, 8 outputs

coded for extract

binary –7.33 298 –15.50 195

one_hot –4.34 348 –10.96 255

auto_4 –6.42 283 < 7 –13.16 190 < 7

auto_5 –6.58 285 –14.63 184

auto_6 –8.30 279 –12.81 191

no extract (binary) –8.87 299 –17.03 204

coded for one_hot

structure –5.27 335 –10.30 259

flatten –5.90 475 < 5 –13.79 370 < 5

flatten & structure –5.04 342 –10.94 260
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Run Time
(minutes)Area

Slack
(ns)

Run Time
(minutes)Area

Slack
(ns)

sm40

40 states, 80 transitions, 63 inputs, 61 outputs

coded for extract

binary –5.19 931 100 –21.04 661 81

one_hot –2.82 912 27 –16.48 737 21

auto_6 –5.39 885 87 –18.60 668 61

auto_7 –5.71 979 76 –29.54 683 51

auto_8 –5.63 933 69 –18.37 682 51

no extract (binary) –7.72 889 35 –31.73 604 6

coded for one_hot

structure –4.78 882 12 –16.59 761 7

flatten –7.38 3026 202 –49.68 2141 73

flatten & structure –4.41 905 28 –16.86 753 22

sm70

69 states, 116 transitions, 27 inputs, 16 outputs

coded for extract

binary –7.98 1030 17 –17.66 857 5

one_hot –3.12 1200 10 –8.28 1121 5

auto_7 –5.51 996 15 –14.67 849 6

auto_8 –5.69 975 13 –11.33 817 6

auto_9 –4.55 1018 19 –11.84 827 5
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Run Time
(minutes)Area

Slack
(ns)

Run Time
(minutes)Area

Slack
(ns)

sm70 (continued)

69 states, 116 transitions, 27 inputs, 16 outputs

no extract (binary) –20.70 1249 49 –60.43 843 8

coded for one_hot

structure –7.92 1339 20 –35.77 1096 12

flatten –6.51 1852 36 –26.20 1548 23

flatten & structure –7.39 1326 29 –33.96 1104 18

Two Verilog versions of each machine were created: one highly encoded for use with
extract , and the other one-hot encoded as described in this paper in the One-Hot
Machine section under Coding State Transitions.

The highly encoded version was extract ed and compiled with a variety of state
encodings: binary, one_hot, and auto with varying bit widths. In addition, the highly
encoded version was compiled without using extract (thus using the binary encoding
specified in the source).

The one-hot version was compiled using a selection of structuring and flattening op-
tions.

The Verilog listings for the prep3 and prep4 examples are given in the Appendix.
Also listed are VHDL versions of the prep4 machine. These sources were also com-
piled, and the results were similar to the Verilog runs shown in the table.

For the max speed runs the prep3 and prep4 examples had a 10-ns clock, while the
sm40 and sm70 examples used a 20-ns clock. The min area runs used a max area
constraint of 0. The target library was the Synopsys class.db library.

All runs used Synopsys Design Compiler version 3.0b-12954 running on a
SPARCstation 2� under SunOS 4.1.3.
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Hints, Tips, Tricks, and Mysteries
� group –fsm sometimes gives you a broken state machine. This doesn’t happen

if you code the FSM all alone in its module.

� reduce_fsm sometimes takes a long time, much longer than the extract  it-
self.

� For Verilog users of extract , you have to define the enum code  parameters

before declaring the reg  that uses it, and also before the state_vector  decla-
ration. In the reg  declaration, enum code  must be between reg  and the name:

   reg [2:0] // synopsys enum code
      state, next_state ;

or

   reg [2:0] /*synopsys enum code*/ state;

� A set_false_path  from the asynchronous reset port of an extracted FSM will
prevent the state flip-flops from being mapped during compile. Apparently an
implicit dont_touch  is placed on the flip-flops. This is no doubt a bug.

� When using auto state encoding, only the unencoded states are given new values.
If you want to replace all current encodings then do this:

   set_fsm_encoding {}
   set_fsm_encoding_style auto

� When using extract  with auto encoding, only the minimum number of state
flip-flops are used. If you have specified a larger number, you may get a warning
about “truncating state vector.” Do a report_fsm  to be sure.

� The encoding picked by extract  does not depend on the applied constraints.

� Coding the same machine in Verilog and VHDL and using extract  gives iden-
tical state tables, but the compile results are slightly different.

� If your HDL source specifies an output as don’t care, this will not be reflected in
the state table, because prior to the extract  you have to map into gates and that
collapses the don’t care.

� Always do an ungroup  before extract .

� set_fsm_encoding  can’t handle more than 31 bits if you are using the ^H for-
mat. Instead use ^B, which works fine.

� Remove any unused inputs from your module before doing an extract . Other-
wise they will be included in the state table and it slows down the compile.
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� Verilog users should infer flip-flops using non-blocking assignments with non-
zero intra-assignment delays:

   always @ (posedge clk)
     myout <= #1 next_myout ;

This is not necessary for Synopsys but should make your flip-flops simulate cor-
rectly in all Verilog simulators (e.g. Verilog-XL and VCS).

When specifying the state flip-flop reset behavior in a one-hot machine (see List-
ing 2 and Listing 4) there are two assignments made to the state vector: the first
clears all state bits to zero, and the second sets one particular state bit to one (in-
dicating the reset state). The second assignment partly overrides the first assign-
ment, so these two assignments must be executed in that order, and therefore
must have different delay values:

   // build the state flip-flops
   always @ (posedge clk or negedge rst)
       begin
       if (!rst) begin
           state        <= #1 8’b0 ;
           state[START] <= #2 1’b1 ;
           end
       else
           state <= #1 next_state ;
       end

� Avoid using synchronous resets; it will probably add many additional transitions
to your machine. For example, the sm40 machine adds 26 transitions for a total
of 106, and the sm70 machine adds 60 for a total of 176.

If you must use synchronous resets, then they should be implemented as part of
the flip-flop inference and not in the state machine description itself. Here is a
Verilog example modified from Listing 3:

     // build the state flip-flops
     always @ (posedge clk)
       begin
       if (!rst)
         state <= #1 S0 ;
       else
         state <= #1 next_state ;
       end

and a VHDL example modified from Listing 5:

     -- build the state flip-flops
     process (clk)
     begin
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       if clk=’1’ and clk’event then
         if rst=’0’ then
           state <= S0 ;
         else
           state <= next_state ;
         end if ;
       end if ;
     end process ;

� When using extract  with auto encoding, only the minimum number of state
flip-flops are used. Nevertheless, specifying more than the minimum will affect
the state assignment and thus the compile results.

� Why is extract  better at flattening a design than compile  using
set_flatten ?
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Appendix
The following example state machines are taken from the PREP benchmark suite
(Ref. 9).

prep3

prep3 is a Mealy machine with eight states and 12 transitions. It has eight inputs and
eight registered outputs. The state diagram is shown in Figure 3.

Listing 1 is a Verilog implementation for use with Synopsys FSM extract .

Listing 2 is a Verilog implementation that is one-hot coded.
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Figure 3. prep 3 State Transition Diagram
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Listing 1—prep3.v
/*
** prep3.v
**
** prep benchmark 3 -- small state machine
** benchmark suite #1 -- version 1.2 -- March 28, 1993
** Programmable Electronics Performance Corporation
**
** binary state assignment -- highly encoded
*/

module prep3 (clk, rst, in, out) ;

input clk, rst ;
input [7:0] in ;
output [7:0] out ;

parameter [2:0] // synopsys enum code
    START = 3’d0 ,
    SA    = 3’d1 ,
    SB    = 3’d2 ,
    SC    = 3’d3 ,
    SD    = 3’d4 ,
    SE    = 3’d5 ,
    SF    = 3’d6 ,
    SG    = 3’d7 ;

// synopsys state_vector state
reg [2:0] // synopsys enum code
    state, next_state ;
reg [7:0] out, next_out ;

always @ (in or state) begin

    // default values

    next_state = START ;
    next_out = 8’bx ;

    // state machine

    case (state) // synopsys parallel_case full_case

    START:
        if (in == 8’h3c) begin
            next_state = SA ;
            next_out = 8’h82 ;
            end
        else begin
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            next_state = START ;
            next_out = 8’h00 ;
            end

    SA:
        case (in) // synopsys parallel_case full_case
            8’h2a:
                begin
                next_state = SC ;
                next_out = 8’h40 ;
                end
            8’h1f:
                begin
                next_state = SB ;
                next_out = 8’h20 ;
                end
            default:
                begin
                next_state = SA ;
                next_out = 8’h04 ;
                end
            endcase

    SB:
        if (in == 8’haa) begin
            next_state = SE ;
            next_out = 8’h11 ;
            end
        else begin
            next_state = SF ;
            next_out = 8’h30 ;
            end

    SC:
        begin
        next_state = SD ;
        next_out = 8’h08 ;
        end

    SD:
        begin
        next_state = SG ;
        next_out = 8’h80 ;
        end

    SE:
        begin
        next_state = START ;
        next_out = 8’h40 ;
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        end

    SF:
        begin
        next_state = SG ;
        next_out = 8’h02 ;
        end

    SG:
        begin
        next_state = START ;
        next_out = 8’h01 ;
        end

    endcase

    end

// build the state flip-flops
always @ (posedge clk or negedge rst)
    begin
    if (!rst)   state <= #1 START ;
    else        state <= #1 next_state ;
    end

// build the output flip-flops
always @ (posedge clk or negedge rst)
    begin
    if (!rst)   out <= #1 8’b0 ;
    else        out <= #1 next_out ;
    end

endmodule

Listing 2—prep3_onehot.v
/*
** prep3_onehot.v
**
** prep benchmark 3 -- small state machine
** benchmark suite #1 -- version 1.2 -- March 28, 1993
** Programmable Electronics Performance Corporation
**
** one-hot state assignment
*/

module prep3 (clk, rst, in, out) ;

input clk, rst ;
input [7:0] in ;
output [7:0] out ;
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parameter [2:0]
    START = 0 ,
    SA    = 1 ,
    SB    = 2 ,
    SC    = 3 ,
    SD    = 4 ,
    SE    = 5 ,
    SF    = 6 ,
    SG    = 7 ;

reg [7:0] state, next_state ;
reg [7:0] out, next_out ;

always @ (in or state) begin

    // default values

    next_state = 8’b0 ;
    next_out = 8’bx ;

    case (1’b1) // synopsys parallel_case full_case

    state[START]:
        if (in == 8’h3c) begin
            next_state[SA] = 1’b1 ;
            next_out = 8’h82 ;
            end
        else begin
            next_state[START] = 1’b1 ;
            next_out = 8’h00 ;
            end

    state[SA]:
        case (in) // synopsys parallel_case full_case
            8’h2a:
                begin
                next_state[SC] = 1’b1 ;
                next_out = 8’h40 ;
                end
            8’h1f:
                begin
                next_state[SB] = 1’b1 ;
                next_out = 8’h20 ;
                end
            default:
                begin
                next_state[SA] = 1’b1 ;
                next_out = 8’h04 ;
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                end
            endcase

    state[SB]:
        if (in == 8’haa) begin
            next_state[SE] = 1’b1 ;
            next_out = 8’h11 ;
            end
        else begin
            next_state[SF] = 1’b1 ;
            next_out = 8’h30 ;
            end

    state[SC]:
        begin
        next_state[SD] = 1’b1 ;
        next_out = 8’h08 ;
        end

    state[SD]:
        begin
        next_state[SG] = 1’b1 ;
        next_out = 8’h80 ;
        end

    state[SE]:
        begin
        next_state[START] = 1’b1 ;
        next_out = 8’h40 ;
        end

    state[SF]:
        begin
        next_state[SG] = 1’b1 ;
        next_out = 8’h02 ;
        end

    state[SG]:
        begin
        next_state[START] = 1’b1 ;
        next_out = 8’h01 ;
        end

    endcase

    end

// build the state flip-flops
always @ (posedge clk or negedge rst)
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    begin
    if (!rst) begin
        state <= #1 8’b0 ;
        state[START] <= #2 1’b1 ;
        end
    else
        state <= #1 next_state ;
    end

// build the output flip-flops
always @ (posedge clk or negedge rst)
    begin
    if (!rst)   out <= #1 8’b0 ;
    else        out <= #1 next_out ;
    end

endmodule

prep4

prep4 is a Moore machine with sixteen states and 40 transitions. It has eight inputs
and eight unregistered outputs. The state diagram is shown in Figure 4.

Listing 3 is a Verilog implementation for use with Synopsys FSM extract .

Listing 4 is a Verilog implementation that is one-hot coded.

Listing 5 is a VHDL implementation for use with Synopsys FSM extract .

Listing 6 is a VHDL implementation that is one-hot coded.
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Figure 4. prep4 State Transition Diagram
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Listing 3—prep4.v
/*
** prep4.v
**
** prep benchmark 4 -- large state machine
** benchmark suite #1 -- version 1.2 -- March 28, 1993
** Programmable Electronics Performance Corporation
**
** binary state assignment -- highly encoded
*/

module prep4 (clk, rst, in, out) ;

input clk, rst ;
input [7:0] in ;
output [7:0] out ;

parameter [3:0] // synopsys enum code
  S0  = 4’d0 ,  S1  = 4’d1 ,  S2  = 4’d2 ,  S3  = 4’d3 ,
  S4  = 4’d4 ,  S5  = 4’d5 ,  S6  = 4’d6 ,  S7  = 4’d7 ,
  S8  = 4’d8 ,  S9  = 4’d9 ,  S10 = 4’d10 , S11 = 4’d11 ,
  S12 = 4’d12 , S13 = 4’d13 , S14 = 4’d14 , S15 = 4’d15 ;

// synopsys state_vector state
reg [3:0] /* synopsys enum code */ state, next_state ;
reg [7:0] out ;

// state machine

always @ (in or state) begin

  // default value
  next_state = S0 ; // always overridden

  case (state) // synopsys parallel_case full_case

    S0: case(1’b1) // synopsys parallel_case full_case
          (in == 8’d0):               next_state = S0 ;
          (8’d0 < in && in < 8’d4):   next_state = S1 ;
          (8’d3 < in && in < 8’d32):  next_state = S2 ;
          (8’d31 < in && in < 8’d64): next_state = S3 ;
          (in > 8’d63):               next_state = S4 ;
          endcase

    S1: if (in[0] && in[1])   next_state = S0 ;
        else                  next_state = S3 ;

    S2: next_state = S3 ;
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    S3: next_state = S5 ;

    S4: if (in[0] || in[2] || in[4])  next_state = S5 ;
        else                          next_state = S6 ;

    S5: if (in[0] == 1’b0)    next_state = S5 ;
        else                  next_state = S7 ;

    S6: case(in[7:6]) // synopsys parallel_case full_case
          2’b11:  next_state = S1 ;
          2’b00:  next_state = S6 ;
          2’b01:  next_state = S8 ;
          2’b10:  next_state = S9 ;
          endcase

    S7: case(in[7:6]) // synopsys parallel_case full_case
          2’b00:  next_state = S3 ;
          2’b11:  next_state = S4 ;
          2’b10,
          2’b01:  next_state = S7 ;
          endcase

    S8: if(in[4] ^ in[5])       next_state = S11 ;
        else if (in[7])         next_state = S1 ;
        else                    next_state = S8 ;

    S9: if (in[0] == 1’b0)      next_state = S9 ;
        else                    next_state = S11 ;

    S10:  next_state = S1 ;

    S11:  if (in == 8’d64)      next_state = S15 ;
          else                  next_state = S8 ;

    S12:  if (in == 8’d255)     next_state = S0 ;
          else                  next_state = S12 ;

    S13:  if (in[1] ^ in[3] ^ in[5])  next_state = S12 ;
          else                        next_state = S14 ;

    S14:  case(1’b1) // synopsys parallel_case full_case
            (in == 8’d0):               next_state = S14 ;
            (8’d0 < in && in < 8’d64):  next_state = S12 ;
            (in > 8’d63):               next_state = S10 ;
            endcase

    S15:  if (in[7] == 1’b0)      next_state = S15 ;
          else
            case (in[1:0])
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              // synopsys parallel_case full_case
              2’b11:  next_state = S0 ;
              2’b01:  next_state = S10 ;
              2’b10:  next_state = S13 ;
              2’b00:  next_state = S14 ;
              endcase
    endcase
  end

// outputs

always @ (state) begin

  // default value
  out = 8’bx ;

  case (state) // synopsys parallel_case full_case
    S0: out = 8’b00000000 ;
    S1: out = 8’b00000110 ;
    S2: out = 8’b00011000 ;
    S3: out = 8’b01100000 ;
    S4: begin
        out[7] = 1’b1 ; out[0] = 1’b0 ;
        end
    S5: begin
        out[6] = 1’b1 ; out[1] = 1’b0 ;
        end
    S6: out = 8’b00011111 ;
    S7: out = 8’b00111111 ;
    S8: out = 8’b01111111 ;
    S9: out = 8’b11111111 ;
    S10:  begin
          out[6] = 1’b1 ; out[4] = 1’b1 ;
          out[2] = 1’b1 ; out[0] = 1’b1 ;
          end
    S11:  begin
          out[7] = 1’b1 ; out[5] = 1’b1 ;
          out[3] = 1’b1 ; out[1] = 1’b1 ;
          end
    S12:  out = 8’b11111101 ;
    S13:  out = 8’b11110111 ;
    S14:  out = 8’b11011111 ;
    S15:  out = 8’b01111111 ;
    endcase
  end

// build the state flip-flops
always @ (posedge clk or negedge rst)
  begin
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  if (!rst) state <= #1 S0 ;
  else      state <= #1 next_state ;
  end

endmodule

Listing 4—prep4_onehot.v
/*
** prep4_onehot.v
**
** prep benchmark 4 -- large state machine
** benchmark suite #1 -- version 1.2 -- March 28, 1993
** Programmable Electronics Performance Corporation
**
** one-hot state assignment
*/

module prep4 (clk, rst, in, out) ;

input clk, rst ;
input [7:0] in ;
output [7:0] out ;

parameter [3:0]
  S0  = 4’d0 ,  S1  = 4’d1 ,  S2  = 4’d2 ,  S3  = 4’d3 ,
  S4  = 4’d4 ,  S5  = 4’d5 ,  S6  = 4’d6 ,  S7  = 4’d7 ,
  S8  = 4’d8 ,  S9  = 4’d9 ,  S10 = 4’d10 , S11 = 4’d11 ,
  S12 = 4’d12 , S13 = 4’d13 , S14 = 4’d14 , S15 = 4’d15 ;

reg [15:0] state, next_state ;
reg [7:0] out ;

// state machine

always @ (in or state) begin

  // default value
  next_state = 16’b0 ;  // only one bit overridden

  case (1’b1) // synopsys parallel_case full_case

   state[S0]:
     case(1’b1) // synopsys parallel_case full_case
       (in == 8’d0):               next_state[S0] = 1’b1 ;
       (8’d0 < in && in < 8’d4):   next_state[S1] = 1’b1 ;
       (8’d3 < in && in < 8’d32):  next_state[S2] = 1’b1 ;
       (8’d31 < in && in < 8’d64): next_state[S3] = 1’b1 ;
       (in > 8’d63):               next_state[S4] = 1’b1 ;
       endcase
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   state[S1]:  if (in[0] && in[1]) next_state[S0] = 1’b1 ;
               else                next_state[S3] = 1’b1 ;
   state[S2]:  next_state[S3] = 1’b1 ;

   state[S3]:  next_state[S5] = 1’b1 ;

   state[S4]:
     if (in[0] || in[2] || in[4])  next_state[S5] = 1’b1 ;
     else                          next_state[S6] = 1’b1 ;

   state[S5]:  if (in[0] == 1’b0)  next_state[S5] = 1’b1 ;
               else                next_state[S7] = 1’b1 ;
   state[S6]:
     case(in[7:6]) // synopsys parallel_case full_case
       2’b11:  next_state[S1] = 1’b1 ;
       2’b00:  next_state[S6] = 1’b1 ;
       2’b01:  next_state[S8] = 1’b1 ;
       2’b10:  next_state[S9] = 1’b1 ;
       endcase

   state[S7]:
     case(in[7:6]) // synopsys parallel_case full_case
       2’b00:  next_state[S3] = 1’b1 ;
       2’b11:  next_state[S4] = 1’b1 ;
       2’b10,
       2’b01:  next_state[S7] = 1’b1 ;
       endcase

   state[S8]:  if(in[4] ^ in[5])   next_state[S11] = 1’b1 ;
               else if (in[7])     next_state[S1] = 1’b1 ;
               else                next_state[S8] = 1’b1 ;

   state[S9]:  if (in[0] == 1’b0)  next_state[S9] = 1’b1 ;
               else                next_state[S11] = 1’b1 ;

   state[S10]: next_state[S1] = 1’b1 ;

   state[S11]: if (in == 8’d64)  next_state[S15] = 1’b1 ;
               else              next_state[S8] = 1’b1 ;

   state[S12]: if (in == 8’d255) next_state[S0] = 1’b1 ;
               else              next_state[S12] = 1’b1 ;

   state[S13]:
     if (in[1] ^ in[3] ^ in[5])  next_state[S12] = 1’b1 ;
     else                        next_state[S14] = 1’b1 ;

   state[S14]:
     case(1’b1) // synopsys parallel_case full_case
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       (in == 8’d0):               next_state[S14] = 1’b1 ;
       (8’d0 < in && in < 8’d64):  next_state[S12] = 1’b1 ;
       (in > 8’d63):               next_state[S10] = 1’b1 ;
       endcase

   state[S15]:
     if (in[7] == 1’b0)      next_state[S15] = 1’b1 ;
     else
       case (in[1:0]) // synopsys parallel_case full_case
         2’b11:  next_state[S0] = 1’b1 ;
         2’b01:  next_state[S10] = 1’b1 ;
         2’b10:  next_state[S13] = 1’b1 ;
         2’b00:  next_state[S14] = 1’b1 ;
         endcase
   endcase
  end

// outputs

always @ (state) begin

  // default value
  out = 8’bx ;

  case (1’b1) // synopsys parallel_case full_case
    state[S0]:  out = 8’b00000000 ;
    state[S1]:  out = 8’b00000110 ;
    state[S2]:  out = 8’b00011000 ;
    state[S3]:  out = 8’b01100000 ;
    state[S4]:  begin
        out[7] = 1’b1 ; out[0] = 1’b0 ;
        end
    state[S5]:  begin
        out[6] = 1’b1 ; out[1] = 1’b0 ;
        end
    state[S6]:  out = 8’b00011111 ;
    state[S7]:  out = 8’b00111111 ;
    state[S8]:  out = 8’b01111111 ;
    state[S9]:  out = 8’b11111111 ;
    state[S10]: begin
        out[6] = 1’b1 ; out[4] = 1’b1 ;
        out[2] = 1’b1 ; out[0] = 1’b1 ;
        end
    state[S11]: begin
        out[7] = 1’b1 ; out[5] = 1’b1 ;
        out[3] = 1’b1 ; out[1] = 1’b1 ;
        end
    state[S12]: out = 8’b11111101 ;
    state[S13]: out = 8’b11110111 ;
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    state[S14]: out = 8’b11011111 ;
    state[S15]: out = 8’b01111111 ;
    endcase
  end

// build the state flip-flops
always @ (posedge clk or negedge rst)
  begin
  if (!rst) begin
            state <= #1 16’b0 ;
            state[S0] <= #2 1’b1 ;
            end
  else      state <= #1 next_state ;
  end

endmodule

Listing 5—prep4.vhd
-- prep4.vhd
--
-- prep benchmark 4 -- large state machine
-- benchmark suite #1 -- version 1.2 -- March 28, 1993
-- Programmable Electronics Performance Corporation
--
-- binary state assignment, highly encoded

library IEEE ;
use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;

package typedef is
  subtype byte is std_logic_vector (7 downto 0) ;
  subtype bytein is bit_vector (7 downto 0) ;
end typedef ;

library IEEE ;
use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use work.typedef.all ;

entity prep4 is
  port ( clk,rst : in std_logic ;
    I : in byte ;
    O : out byte) ;
end prep4 ;

architecture behavior of prep4 is
  type state_type is (S0, S1, S2, S3,
    S4, S5, S6, S7, S8, S9, S10, S11,
    S12, S13, S14, S15) ;
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  signal state, next_state : state_type ;
  attribute state_vector : string ;
  attribute state_vector of behavior :
    architecture is ”state” ;
  signal Iin : bytein ;
begin

  process (I)
  begin
    Iin <= to_bitvector(I);
  end process ;

  -- state machine

  process (Iin, state)
  begin
    -- default value
    next_state <= S0 ;

    case state is

    when S0 =>
      if (Iin = X”00”) then
        next_state <= S0;
        end if ;
      if (x”00” < Iin) and (Iin < x”04”) then
        next_state <= S1;
        end if;
      if (x”03” < Iin) and (Iin < x”20”) then
        next_state <= S2;
        end if;
      if (x”1f” < Iin) and (Iin < x”40”) then
        next_state <= S3;
        end if;
      if (x”3f” < Iin) then
        next_state <= S4;
        end if;

    when S1 =>
      if (Iin(1) and Iin(0)) = ’1’ then
        next_state <= S0;
      else
        next_state <= S3;
        end if ;

    when S2 =>
      next_state <= S3 ;

    when S3 =>
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      next_state <= S5 ;

    when S4 =>
      if (Iin(0) or Iin(2) or Iin(4)) = ’1’ then
        next_state <= S5 ;
      else
        next_state <= S6 ;
        end if ;

    when S5 =>
      if (Iin(0) = ’0’) then
        next_state <= S5 ;
      else
        next_state <= S7 ;
        end if ;

    when S6 =>
      case Iin(7 downto 6) is
        when b”11” => next_state <= S1 ;
        when b”00” => next_state <= S6 ;
        when b”01” => next_state <= S8 ;
        when b”10” => next_state <= S9 ;
        end case ;

    when S7 =>
      case Iin(7 downto 6) is
        when b”00” => next_state <= S3 ;
        when b”11” => next_state <= S4 ;
        when b”01” => next_state <= S7 ;
        when b”10” => next_state <= S7 ;
        end case ;

    when S8 =>
      if (Iin(4) xor Iin(5)) = ’1’  then
        next_state <= S11 ;
      elsif Iin(7) = ’1’ then
        next_state <= S1 ;
      else
        next_state <= S8 ;
        end if;

    when S9 =>
      if (Iin(0) = ’1’) then
        next_state <= S11 ;
      else
        next_state <= S9 ;
        end if;

    when S10 =>
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      next_state <= S1 ;

    when S11 =>
      if Iin = x”40” then
        next_state <= S15 ;
      else
        next_state <= S8 ;
        end if ;

    when S12 =>
      if Iin = x”ff” then
        next_state <= S0 ;
      else
        next_state <= S12 ;
        end if ;

    when S13 =>
      if (Iin(1) xor Iin(3) xor Iin(5)) = ’1’ then
        next_state <= S12 ;
      else
        next_state <= S14 ;
        end if ;

    when S14 =>
      if (Iin > x”3f”) then
        next_state <= S10 ;
      elsif (Iin = x”00”) then
        next_state <= S14 ;
      else
        next_state <= S12 ;
        end if ;

    when S15 =>
      if Iin(7) = ’0’ then
        next_state <= S15 ;
      else
        case Iin(1 downto 0) is
          when b”11” => next_state <= S0 ;
          when b”01” => next_state <= S10 ;
          when b”10” => next_state <= S13 ;
          when b”00” => next_state <= S14 ;
          end case ;
        end if ;
    end case ;
  end process;

  -- outputs

  process (state)
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  begin

    -- default value is don’t care
    O <= byte’(others => ’X’) ;

    case state is
      when S0 =>  O <= ”00000000” ;
      when S1 =>  O <= ”00000110” ;
      when S2 =>  O <= ”00011000” ;
      when S3 =>  O <= ”01100000” ;
      when S4 =>
          O(7) <= ’1’ ;
          O(0) <= ’0’ ;
      when S5 =>
          O(6) <= ’1’ ;
          O(1) <= ’0’ ;
      when S6 =>  O <= ”00011111” ;
      when S7 =>  O <= ”00111111” ;
      when S8 =>  O <= ”01111111” ;
      when S9 =>  O <= ”11111111” ;
      when S10 =>
          O(6) <=’1’ ;
          O(4) <=’1’ ;
          O(2) <=’1’ ;
          O(0) <=’1’ ;
      when S11 =>
          O(7) <=’1’ ;
          O(5) <=’1’ ;
          O(3) <=’1’ ;
          O(1) <=’1’ ;
      when S12 => O <= ”11111101” ;
      when S13 => O <= ”11110111” ;
      when S14 => O <= ”11011111” ;
      when S15 => O <= ”01111111” ;
      end case ;
  end process;

  -- build the state flip-flops
  process (clk, rst)
  begin
    if rst=’0’ then
      state <= S0 ;
    elsif clk=’1’ and clk’event then
      state <= next_state ;
    end if ;
  end process ;

end behavior ;
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Listing 6—prep4_onehot.vhd
-- prep4_onehot.vhd
--
-- prep benchmark 4 -- large state machine
-- benchmark suite #1 -- version 1.2 -- March 28, 1993
-- Programmable Electronics Performance Corporation
--
-- one-hot state assignment

library IEEE ;
use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;

package typedef is
  subtype state_vec is std_logic_vector (0 to 15) ;
  subtype byte is std_logic_vector (7 downto 0) ;
  subtype bytein is bit_vector (7 downto 0) ;
end typedef ;

library IEEE ;
use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use work.typedef.all ;

entity prep4 is
  port ( clk,rst : in std_logic ;
      I : in byte ;
      O : out byte) ;
end prep4 ;

architecture behavior of prep4 is
  signal state, next_state : state_vec ;
  signal Iin : bytein ;
begin
  process (I)
  begin
    Iin <= to_bitvector(I);
  end process ;

  -- state machine

  process (Iin, state)
  begin
    -- default value
    next_state <= state_vec’(others => ’0’) ;

    if state(0) = ’1’ then
      if (Iin = X”00”) then
        next_state(0) <= ’1’;       end if ;
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      if (x”00” < Iin) and (Iin < x”04”) then
        next_state(1) <= ’1’;       end if;
      if (x”03” < Iin) and (Iin < x”20”) then
        next_state(2) <= ’1’;       end if;
      if (x”1f” < Iin) and (Iin < x”40”) then
        next_state(3) <= ’1’;       end if;
      if (x”3f” < Iin) then
        next_state(4) <= ’1’;       end if;
      end if;

    if state(1) = ’1’ then
      if (Iin(1) and Iin(0)) = ’1’ then
        next_state(0) <= ’1’;
      else
        next_state(3) <= ’1’;       end if ;
      end if ;

    if state(2) = ’1’ then
      next_state(3) <= ’1’ ;
      end if;

    if state(3) = ’1’ then
      next_state(5) <= ’1’ ;
      end if;

    if state(4) = ’1’ then
      if (Iin(0) or Iin(2) or Iin(4)) = ’1’ then
        next_state(5) <= ’1’ ;
      else
        next_state(6) <= ’1’ ;        end if ;
      end if;

    if state(5) = ’1’ then
      if (Iin(0) = ’0’) then
        next_state(5) <= ’1’ ;
      else
        next_state(7) <= ’1’ ;        end if ;
      end if;

    if state(6) = ’1’ then
      case Iin(7 downto 6) is
        when b”11” => next_state(1) <= ’1’ ;
        when b”00” => next_state(6) <= ’1’ ;
        when b”01” => next_state(8) <= ’1’ ;
        when b”10” => next_state(9) <= ’1’ ;
        end case ;
      end if;

    if state(7) = ’1’ then
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      case Iin(7 downto 6) is
        when b”00” => next_state(3) <= ’1’ ;
        when b”11” => next_state(4) <= ’1’ ;
        when b”01” => next_state(7) <= ’1’ ;
        when b”10” => next_state(7) <= ’1’ ;
        end case ;
      end if;

    if state(8) = ’1’ then
      if (Iin(4) xor Iin(5)) = ’1’  then
        next_state(11) <= ’1’ ;
      elsif Iin(7) = ’1’ then
        next_state(1) <= ’1’ ;
      else
        next_state(8) <= ’1’ ;        end if;
      end if;

    if state(9) = ’1’ then
      if (Iin(0) = ’1’) then
        next_state(11) <= ’1’ ;
      else
        next_state(9) <= ’1’ ;        end if;
      end if;

    if state(10) = ’1’ then
      next_state(1) <= ’1’ ;
      end if ;

    if state(11) = ’1’ then
      if Iin = x”40” then
        next_state(15) <= ’1’ ;
      else
        next_state(8) <= ’1’ ;        end if ;
      end if ;

    if state(12) = ’1’ then
      if Iin = x”ff” then
        next_state(0) <= ’1’ ;
      else
        next_state(12) <= ’1’ ;       end if ;
      end if ;

    if state(13) = ’1’ then
      if (Iin(1) xor Iin(3) xor Iin(5)) = ’1’ then
        next_state(12) <= ’1’ ;
      else
        next_state(14) <= ’1’ ;       end if ;
      end if ;
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    if state(14) = ’1’ then
      if (Iin > x”3f”) then
        next_state(10) <= ’1’ ;
      elsif (Iin = x”00”) then
        next_state(14) <= ’1’ ;
      else
        next_state(12) <= ’1’ ;       end if ;
      end if ;

    if state(15) = ’1’ then
      if Iin(7) = ’0’ then
        next_state(15) <= ’1’ ;
      else
        case Iin(1 downto 0) is
          when b”11” => next_state(0) <= ’1’ ;
          when b”01” => next_state(10) <= ’1’ ;
          when b”10” => next_state(13) <= ’1’ ;
          when b”00” => next_state(14) <= ’1’ ;
          end case ;
        end if ;
      end if ;
  end process;

  -- outputs

  process (state)
  begin

    -- default value is don’t care
    O <= byte’(others => ’X’) ;

    if state(0) = ’1’ then  O <= ”00000000” ; end if ;
    if state(1) = ’1’ then  O <= ”00000110” ; end if ;
    if state(2) = ’1’ then  O <= ”00011000” ; end if ;
    if state(3) = ’1’ then  O <= ”01100000” ; end if ;
    if state(4) = ’1’ then
      O(7) <= ’1’ ;
      O(0) <= ’0’ ;
      end if ;
    if state(5) = ’1’ then
      O(6) <= ’1’ ;
      O(1) <= ’0’ ;
      end if ;
    if state(6) = ’1’ then  O <= ”00011111” ; end if ;
    if state(7) = ’1’ then  O <= ”00111111” ; end if ;
    if state(8) = ’1’ then  O <= ”01111111” ; end if ;
    if state(9) = ’1’ then  O <= ”11111111” ; end if ;
    if state(10) = ’1’ then
      O(6) <=’1’ ;
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      O(4) <=’1’ ;
      O(2) <=’1’ ;
      O(0) <=’1’ ;
      end if ;
    if state(11) = ’1’ then
      O(7) <=’1’ ;
      O(5) <=’1’ ;
      O(3) <=’1’ ;
      O(1) <=’1’ ;
      end if ;
    if state(12) = ’1’ then O <= ”11111101” ; end if ;
    if state(13) = ’1’ then O <= ”11110111” ; end if ;
    if state(14) = ’1’ then O <= ”11011111” ; end if ;
    if state(15) = ’1’ then O <= ”01111111” ; end if ;

  end process;

  -- build the state flip-flops
  process (clk, rst)
  begin
    if rst=’0’ then
      state <= state_vec’(others => ’0’) ;
      state(0) <= ’1’ ;
    elsif clk=’1’ and clk’event then
      state <= next_state ;
    end if ;
  end process ;

end behavior ;
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