
State Machine Design Techniques for Verilog and VHDL

1Synopsys Journal of High-Level Design September 1994�

State Machine Design Techniques
for Verilog and VHDL

Steve Golson, Trilobyte Systems

Designing a synchronous finite state machine (FSM) is a common task for a digital
logic engineer. This paper discusses a variety of issues regarding FSM design using
Synopsys Design Compiler�. Verilog� and VHDL coding styles are presented, and
different methodologies are compared using real-world examples.

A finite state machine has the general structure shown in Figure 1. The current state
of the machine is stored in the state memory, a set of n flip-flops clocked by a single
clock signal (hence “synchronous” state machine). The state vector (also current
state, or just state) is the value currently stored by the state memory. The next state
of the machine is a function of the state vector and the inputs. Mealy outputs are a
function of the state vector and the inputs, while Moore outputs are a function of the
state vector only.

STATE
MEMORY

current state

(Mealy only)

clock

outputs
inputs

OUTPUT
LOGIC

NEXT
STATE
LOGIC

Figure 1. State Machine Structure

State Machine Design Techniques for Verilog and VHDL

2 Synopsys Journal of High-Level Design September 1994�

current state

clock

outputs

inputs

STATE
MEMORY

LOGIC

Figure 2. Alternative State Machine Structure

Another way of organizing a state machine uses only one logic block, as shown in
Figure 2.

Basic HDL Coding
The logic in a state machine is described using a case statement or the equivalent
(e.g., if-else). All possible combinations of current state and inputs are enumer-
ated, and the appropriate values are specified for next state and the outputs.

A state machine may be coded as in Figure 1 using two separate case statements,
or, following Figure 2, using only one. A single case statement may be preferred
for Mealy machines where the outputs depend on the state transition rather than just
the current state.

The listings in the Appendix show examples of both techniques. prep3 uses a single
case whereas prep4 is coded with a separate logic block that generates the outputs.

Here are a few general rules to follow:

� Only one state machine per module

� Keep extraneous logic at a minimum (for example, try not to put other code in
the same module as the FSM—this is especially important if you use extract)

� Instantiate state flip-flops separately from logic

State Assignment
Usually the most important decision to make when designing a state machine is what
state encoding to use. A poor choice of codes results in a state machine that uses too
much logic, or is too slow, or both.

State Machine Design Techniques for Verilog and VHDL

3Synopsys Journal of High-Level Design September 1994�

Many tools and techniques have been developed for choosing an “optimal” state as-
signment. Typically such approaches use the minimum number of state bits (Ref. 1)
or assume a two-level logic implementation such as a PLA (Ref. 2). Only recently
has work been done on the multi-level logic synthesis typical of gate array design
(Ref. 3).

Highly Encoded State Assignment

A highly encoded state assignment will use fewer flip-flops for the state vector;
however, additional logic will be required simply to encode and decode the state.

One-Hot Encoding

In one-hot encoding, only one bit of the state vector is asserted for any given state.
All other state bits are zero. So if there are n states, then n state flip-flops are re-
quired. State decode is simplified, since the state bits themselves can be used directly
to indicate whether the machine is in a particular state. No additional logic is re-
quired.

History of One-Hot Encoding

The first discussion of one-hot state machines was given by Huffman (Refs. 4 and
5). He analyzed asynchronous state machines implemented with electromechanical
relays, and introduced a “one-relay-per-row” realization of his flow tables.

Why Use One-Hot?

There are numerous advantages to using the one-hot design methodology:

� One-hot state machines are typically faster. Speed is independent of the number of
states, and instead depends only on the number of transitions into a particular state.
A highly encoded machine may slow dramatically as more states are added.

� You don’t have to worry about finding an “optimal” state encoding. This is par-
ticularly beneficial as the machine design is modified, for what is “optimal” for
one design may no longer be best if you add a few states and change some oth-
ers. One-hot is equally “optimal” for all machines.

� One-hot machines are easy to design. HDL code can be written directly from the
state diagram without coding a state table.

� Modifications are straightforward. Adding and deleting states, or changing ex-
citation equations, can be implemented easily without affecting the rest of the
machine.

� Easily synthesized from VHDL or Verilog.

State Machine Design Techniques for Verilog and VHDL

4 Synopsys Journal of High-Level Design September 1994�

� There is typically not much area penalty over highly encoded machines.

� Critical paths are easy to find using static timing analysis.

� It is easy to debug. Bogus state transitions are obvious, and current state display
is trivial.

Almost One-Hot Encoding

If a machine has two groups of states with almost identical functionality (e.g., for
handling read and write access to a device), an “almost one-hot” encoding may be
used where a single flag or state bit is used to indicate which of the two state groups
the FSM is currently in. The remainder of the state bits are encoded one-hot. Thus to
fully decode a given state we must look at two state bits. This scheme has most of
the benefits of a pure one-hot machine but with less logic.

Although the flag bit is technically part of the state vector, it may be useful to con-
sider the flag flip-flop output pin as just another input to the machine (and likewise
the flag flip-flop input pin is a machine output). In the above example the flag might
have a name like RW.

Another “almost one-hot” encoding uses the all-zeros or “no-hot” encoding for the
initial state. This allows for easy machine reset since all flip-flops go to zero. This
may be especially useful when a synchronous reset is needed.

Error Recovery and Illegal States

It is sometimes argued that state machines should have the minimum number of state
flip-flops (i.e., a highly encoded state assignment) because this minimizes the num-
ber of illegal states. The hope is that if the machine malfunctions and makes an ille-
gal transition, at least the erroneous destination will be a legal state, and the machine
can recover.

This often turns out not to be the case. Just because the machine ends up in a “legal”
state doesn’t mean that it can recover from the error. Consider a WAIT state that the
machine loops in until a particular signal is received. If the WAIT state is entered
accidentally then the machine probably hangs.

Perhaps to facilitate error recovery the maximum number of state flip-flops should be
used (i.e., one-hot). If a bad transition is made, then it will almost certainly put the
machine in an illegal state (since the legal states are a small fraction of all possible
state vector values). This illegal state can be detected by external logic, which may
then take appropriate action (e.g., reset the FSM).

State Machine Design Techniques for Verilog and VHDL

5Synopsys Journal of High-Level Design September 1994�

Coding State Transitions
State transitions are coded using a case structure to specify the next state values.

Highly Encoded Machine

For a highly encoded machine the case statement uses the state vector as the ex-
pression. In Verilog the case items are typically parameters that specify the state
encoding for each state:

case (state)
 // synopsys parallel_case full_case

 START:
 if (in == 8’h3c)
 next_state = SA ;
 else
 next_state = START ;

 SB:
 if (in == 8’haa)
 next_state = SE ;
 else
 next_state = SF ;

 SC:
 next_state = SD ;

See Listing 1 and Listing 3 for more examples. Using parameter and the
full_case directive in Verilog, we can specify arbitrary state encodings and still
have efficient logic.

In VHDL the state encodings are declared as an enumerated type (see Listing 5).
The actual numeric value of the enumerated elements is predefined by the VHDL
language: the first element is 0, then 1, 2, etc. It is difficult to define arbitrary encod-
ings in the VHDL language.1

To remedy this problem Synopsys has provided the attribute enum_encoding ,
which allows you to specify numeric code values for the enumerated types. Unfortu-
nately, not all VHDL simulators will implement this vendor-specific extension,
which means your behavioral and gate simulations will use different encodings.

�� ���� ����� ����� ����� �� ��
� �	� ���� ���

State Machine Design Techniques for Verilog and VHDL

6 Synopsys Journal of High-Level Design September 1994�

One-Hot Machine

For one-hot encoding you need only look at one bit to determine if you are in a par-
ticular state. Thus the statement in Verilog looks as follows (see Listing 2 for more):

next_state = 8’b0 ;

case (1’b1)
 // synopsys parallel_case full_case

 state[START]:
 if (in == 8’h3c)
 next_state[SA] = 1’b1 ;
 else
 next_state[START] = 1’b1 ;

 state[SB]:
 if (in == 8’haa)
 next_state[SE] = 1’b1 ;
 else begin
 next_state[SF] = 1’b1 ;

 state[SC]:
 next_state[SD] = 1’b1 ;

The statement looks at each state bit in turn until it finds the one that is set. Then
one bit of next_state is set corresponding to the appropriate state transition. The
remaining bits of next_state are all set to zero by the default statement

 next_state = 8’b0 ;

Note the use of parallel_case and full_case directives for maximum effi-
ciency. The default statement should not be used during synthesis. However
default can be useful during behavioral simulation, so use compiler directives to
prevent Design Compiler from seeing it:

// synopsys translate_off
default: $display(“He’s dead, Jim.”) ;
// synopsys translate_on

For VHDL we use a sequence of if statements (see Listing 6 for more):

next_state <= state_vec’(others=>’0’);

if state(1) = ’1’ then
 if (Iin(1) and Iin(0)) = ’1’ then
 next_state(0) <= ’1’;
 else
 next_state(3) <= ’1’;
 end if ;
end if ;

State Machine Design Techniques for Verilog and VHDL

7Synopsys Journal of High-Level Design September 1994�

if state(2) = ’1’ then
 next_state(3) <= ’1’ ;
end if;

As before, all the bits of next_state are set to zero by the default assignment, and
then one bit is set to 1, indicating the state transition.

For both the Verilog and VHDL one-hot machines, the behavioral simulation will
exactly agree with the post-synthesis gate-level simulation.

Almost One-Hot Machine

The only difference from the pure one-hot machine is that you may look at more
than one state bit to determine the current state:

case (1’b1)
 // synopsys parallel_case full_case

 state[START] && state[RW]:
 if (in == 8’h3c)
 next_state[SA] = 1’b1 ;
 else
 next_state[START] = 1’b1 ;

Outputs
Outputs are coded in a manner similar to the next state value. A case statement (or
the equivalent) is used, and the output is assigned the appropriate value depending
on the particular state transition or state value.

If the output is a don’t care for some conditions, then it should be driven unknown
(x) . Design Compiler will use this don’t care information when optimizing the
logic.

Assigning the output to a default value prior to the case statement will ensure that
the output is specified for all possible state and input combinations. This will avoid
unexpected latch inference on the output. Also, the code is simplified by specifying a
default value that may be overridden only when necessary. The default value may be
1, 0, or x.

It is best to have a default of 0 and occasionally set it to 1 rather than the reverse
(even if this requires an external inverter). Consider an output that is 1 in a single
state, and 0 otherwise. Design Compiler will make the output equal to the one-hot
state bit for that state. Now consider an output that is 0 in only one state, and 1
otherwise. The output will be driven by an OR of all the other state bits! Using
set_flatten -phase true will not help.

State Machine Design Techniques for Verilog and VHDL

8 Synopsys Journal of High-Level Design September 1994�

For a one-hot machine you can use the state bits directly to create outputs that are
active in those states:

myout = state[IDLE] || state[FOO] ;

Sometimes it is easier to specify an output value as a function of the next state rather
than of the current state.

Registered Outputs
Outputs can be registered. A simple D flip-flop may be used, but a JK functionality
can be implemented as well. The output of the flip-flop is fed back as an input to the
machine. The default next output value is the current flip-flop output:

next_myout = myout ; /* default */

With no further assignment the value will hold, or we can set, clear, and toggle:

next_myout = 1’b1 ; /* set */
next_myout = 1’b0 ; /* clear */
next_myout = !myout ; /* toggle */

This JK-type output is especially useful for pseudo-state flag bits (see the previous
section titled “Almost One-Hot Encoding”).

Inputs

Asynchronous Inputs
Sometimes a state machine will have an input that may change asynchronously with
respect to the clock. Such an input must be synchronized, and there must be one and
only one synchronizer flip-flop.

The easiest way to accomplish this is to have the sync flip-flop external to the state
machine module, and place a large2 set_input_delay on that input to allow time
for the sync flip-flop to settle.

If the sync flip-flop is included in the same module as the FSM, then you can place
an input delay on the internal flip-flop output pin. Unfortunately this requires the
flip-flop to be mapped prior to compiling the rest of the machine.

Rather than hand-instantiating the flip-flop we can use register inference as usual
and simply map that one flip-flop before compiling. The following script will map
the flip-flop:

�� #
���� ���� ���� ������� �� "��� ����� ������� ��� �!�� ������� �� "��� ��	� ����� ���� ��� ����������"
������������� �� ����� ����$������ ��" ��� �� �����

State Machine Design Techniques for Verilog and VHDL

9Synopsys Journal of High-Level Design September 1994�

/* get the name of the unmapped flip-flop */
theflop = signal_to_be_synced + ”_reg”
/* group it into a design by itself */
group -cell flip-flop -design temp find(cell,theflop)
/* remember where you are */
top = current_design
/* push into the new design */
current_design = temp
/* set_register_type if necessary */
/* map the flip-flop */
compile -map_effort low -no_design_rule
/* pop back up */
current_design = top
/* ungroup the flip-flop */
ungroup -simple_names find(cell,flop)
/* clean up */
remove_design temp
remove_variable top
/* now set the internal delay */
set_input_delay 10 -clock clk find(pin,theflop/Q*)
/* now you can compile the fsm */

The will put an implicit dont_touch on the sync flip-flop.

If your ASIC vendor has a “metastable resistant” flip-flop then use
set_register_type to specify it.

Unknown Inputs

A related problem occurs when an input is valid at certain well-defined times, and is
otherwise unknown (and possibly asynchronous). Even if your code is written to
only use this signal when you know it to be stable, Design Compiler may create opti-
mized logic whereby changes in this input may cause glitches even when you are not
“looking” at it.3

The only way to prevent this problem is to gate the input signal with an enable. This
enable signal is usually a simple decode of the state vector; thus the gate output is
non-zero only when the enable is true and will never be unknown. The gate output is
used in place of the input signal in your FSM.

To implement this gating function, an AND gate (or other suitable logic) must be
hand-instantiated and protected with dont_touch during compile.

�� �� ��
���� ���� �� ����� ��� ����
� �� ���
�
 ��� ������� �� ���
�
 ������ �� ��� ���
�� ���
� ���� ������
��������
������ ��� ��� ������ ���� �
�� ��� �
�� �
��� ���
����� �� ��� ������ �
���� 	�������
��� � �������� �� ���
������ �
 ������������ �
��� �������� �� ��� ��� �������

State Machine Design Techniques for Verilog and VHDL

10 Synopsys Journal of High-Level Design September 1994�

Rather than instantiating a specific gate from your vendor library, the gate can be
selected from the Synopsys GTECH library. This keeps your HDL code vendor-
independent. In Verilog this is done as follows:

 GTECH_AND2 myand (
 .Z(signal_qualified),
 .A(signal_in), .B(enable)) ;

and for VHDL

 myand : GTECH_AND2 port map(
 Z => signal_qualified,
 A => signal_in, B => enable) ;

Your compile script should contain

 set_map_only find(cell,myand) ;

which prevents logic-level optimization during the compile. Design Compiler will
attempt to map the gate exactly in the target library.

Sometimes this technique will create redundant logic in your module. This can cause
a problem when generating test vectors, because some nodes may not be testable.

Verilog users may be tempted to use gate primitives:

and myand (signal_qualified, signal_in, enable) ;

making the reasonable assumption that this will initially map to a GTECH_AND2 as
the Verilog is read in. Then set_map_only could be used as above. Unfortunately
this does not work; gate primitives do not always map to a GTECH cell. Perhaps a
future Synopsys enhancement will allow this.

In order to support behavioral simulation of your HDL, a behavioral description of
the GTECH gates must be provided. Synopsys supplies such a library only for
VHDL users. One hopes that a similar Verilog library will be provided in a future
release.

FSM Extract
Design Compiler directly supports finite-state machines using the extract com-
mand. extract gives you the ability to change your state encodings during com-
pile, thus allowing you to experiment with different FSM implementations (Ref. 7).

To use extract you must tell Design Compiler where your state vector is, and also
any state names and encodings you may have. The easiest way to do this is with at-

tribute state_vector in VHDL and via the enum code and state_vector

synthetic comments in Verilog. (See Listing 1, Listing 3, and Listing 5 for exam-
ples.)

State Machine Design Techniques for Verilog and VHDL

11Synopsys Journal of High-Level Design September 1994�

extract puts your design into a two-level PLA format before doing any optimiza-
tions and transformations. So if your design cannot be flattened, you cannot use ex-

tract .

Synopsys provides the group -fsm command to isolate your state machine from
any other logic in its module. Unfortunately, the newly-created ports have Synopsys
internal names like n1234 . The resulting state table is difficult to understand. There-
fore to efficiently use extract you should avoid group -fsm. This means you
can have no extraneous logic in your module.

Your design must be mapped to gates before you can use extract . Synopsys sug-
gests that you run compile on your design after reading in the HDL and before ap-
plying any constraints:

compile -map_effort low -no_design_rule

This isn’t really necessary since most of your design will already be implemented in
generic logic after reading the HDL, and extract can handle that fine. What you
really must do is

 replace_synthetic

to map all synthetic library elements into generic logic, followed by

 ungroup -all -flatten

to get rid of any hierarchy. This will be considerably faster than using compile .

After using extract , always do check_design to get a report on any bad state
transitions.

Advantages
You can get very fast results using extract with set_fsm_coding_style

one_hot .

FSM design errors can be uncovered by inspecting the extracted state table.

Disadvantages
The world isn’t a PLA, but extract treats your design like one.

Unless you are truly area constrained, the only interesting coding style that extract

supports is one-hot. You might as well code for one-hot to begin with (see “One-Hot
Machine” in the Coding State Transitions section of this paper).

You can be happily using extract , but one day modify your HDL source and then
discover that you can no longer flatten the design. This precludes any further use of
extract .

State Machine Design Techniques for Verilog and VHDL

12 Synopsys Journal of High-Level Design September 1994�

Compile scripts are more verbose and complicated.

Timing Constraints
When applying timing constraints, you should use the real clock only for the state
flip-flops. Virtual clocks are then used to specify the input and output delays:

clk_period = 10
clk_rise = 0
clk_fall = clk_period / 2.0
/* create the clocks */
create_clock find(port,clk) \
 -period clk_period \
 -waveform {clk_rise clk_fall}
create_clock -name inclk \
 -period clk_period \
 -waveform {clk_rise clk_fall}
create_clock -name outclk \
 -period clk_period \
 -waveform {clk_rise clk_fall}
/* set the constraints */
set_input_delay clk_fall \
 -clock inclk find(port,in)
set_output_delay clk_fall \
 -clock outclk find(port,out)

This allows a clock skew to be applied to the state flip-flops without affecting the
input and output timing (which may be relative to an off-chip clock, for example).

If you have any Mealy outputs, you generally need to specify them as a multicycle
path using

set_multicycle_path -setup 2 \
 -from all_inputs() \
 -to all_outputs()
set_multicycle_path -hold 1 \
 -from all_inputs() \
 -to all_outputs()

Sometimes it is useful to group paths into four categories: input to state flip-flop,
state flip-flop to output, input to output (Mealy path), and state flip-flop to state flip-
flop. With the paths in different groups, they can be given different cost function
weights during compile.

If you use separate clocks as suggested above, you might be tempted to try this:

/* put all paths in default group */
group_path -default -to \
 { find(clock) find(port) find(pin) } \

State Machine Design Techniques for Verilog and VHDL

13Synopsys Journal of High-Level Design September 1994�

 > /dev/null
/* now arrange them */
group_path -name theins \
 -from find(clock,inclk) \
 -to find(clock,clk)
group_path -name theouts \
 -from find(clock,clk) \
 -to find(clock,outclk)
group_path -name thru \
 -from find(clock,inclk) \
 -to find(clock,outclk)
group_path -name flop \
 -from find(clock,clk) \
 -to find(clock,clk)

Unfortunately, this doesn’t work! It seems that whenever you specify a clock as a
startpoint or endpoint of a path, all paths with that clock are affected. You end up
with the same path in more than one group.4 So instead of using clocks, we can
specify pins:

group_path -name theins \
 -from all_inputs() \
 -to all_registers(-data)
group_path -name theouts \
 -from all_registers(-clock_pins) \
 -to all_outputs()
group_path -name thru \
 -from all_inputs() \
 -to all_outputs()
group_path -name flop \
 -from all_registers(-clock_pins)
 -to all_registers(-data)

This works fine. You do get the paths where you want them.5

Regardless of the path groupings, we can specify timing reports that give us the in-
formation we want:

report_timing \
 -from all_inputs() \
 -to all_registers(-data)
report_timing \
 -from all_registers(-clock_pins) \
 -to all_outputs()
report_timing \

�� 	�������! ���� ���� �� �� �� �� � ������ ��������

��
��� ����� ���� �� !�� �����! ����� ������ �� �������� ����� �� ��� ����"����� ��� ������ ������ ��� ������� ��"
���� �������� �����������! ������ ��� ����"���� ��� ����� ���� �� ��� ���� ����������

State Machine Design Techniques for Verilog and VHDL

14 Synopsys Journal of High-Level Design September 1994�

 -from all_inputs() \
 -to all_outputs()
report_timing \
 -from all_registers(-clock_pins) \
 -to all_registers(-data)

One-Hot Timing Reports

A further advantage of one-hot state assignment is that critical path timing reports
can be directly related to the state diagram. Consider the following timing report:

 Point Path

 clock clk (rise edge) 0.00
 clock network delay (ideal) 0.00
 state_reg[0]/CP (FD2) 0.00 r
 state_reg[0]/QN (FD2) 5.25 f
 U481/Z (NR2) 11.39 r
 U505/Z (IV) 12.21 f
 U474/Z (NR2) 14.14 r
 U437/Z (EO1) 16.23 f
 U469/Z (AO3) 18.11 r
 U463/Z (EO1) 20.21 f
 U480/Z (AO7) 22.08 r
 U440/Z (AO2) 23.24 f
 U495/Z (ND2) 24.65 r
 state_reg[1]/D (FD2) 24.65 r
 data arrival time 24.65

If this is a highly encoded machine, then it is very difficult to determine which state
transition this path corresponds to. Worse, this may actually be a false path.

In contrast, if this is a one-hot machine, then this transition must start in state[0] be-
cause flip-flop state_reg[0] is set (pin state_reg[0]/QN falling), and must
end in state[1] because flip-flop state_reg[1] is being set (state_reg[1]/D is
rising).

Now that the particular transition has been identified, it may be recoded to speed up
the path.

When using extract , the state flip-flops for one-hot machines are given the names
of the corresponding states. This makes path analysis particularly straightforward.

State Machine Design Techniques for Verilog and VHDL

15Synopsys Journal of High-Level Design September 1994�

Synthesis Strategies
If you are using extract , there aren’t many useful compile options. Flattening is
ignored, so all you can do is turn structuring on and off.

For a one-hot machine, flattening may provide some benefit. As usual, the improve-
ments vary widely depending on your particular application (Ref. 8)

One interesting technique to experiment with is pipeline retiming with the
balance_registers command. This is intended primarily for pipelined data-
paths, but it does work with a single bank of flip-flops, as in a state machine. The
drawbacks are:

� The flip-flops cannot have asynchronous resets

� Results may be affected by

 compile_preserve_sync_resets = ”true”

� State encodings change in unpredictable ways

Compile Results
Four sample state machines were used to compare and illustrate the techniques out-
lined in this paper. The results are shown in Table 1.

Table 1. Compile results for Sample State Machines

����
�� 	�� ���
��� ����� ����
�� 	�� �

��� ����

Slack
(ns) Area

Run Time
(minutes)

Slack
(ns) Area

Run Time
(minutes)

prep3

8 states, 12 transitions, 8 inputs, 8 outputs

coded for extract

binary –5.41 228 –8.84 166

one_hot –5.19 227 –11.59 196

auto_3 –5.95 214 < 2 –7.29 164 < 2

auto_4 –5.01 234 –8.55 159

State Machine Design Techniques for Verilog and VHDL

16 Synopsys Journal of High-Level Design September 1994�

����
�� 	�� �

��� ��������
�� 	�� ���
��� �����

Run Time
(minutes)Area

Slack
(ns)

Run Time
(minutes)Area

Slack
(ns)

prep3 (continued)

8 states, 12 transitions, 8 inputs, 8 outputs

auto_5 –5.43 229 –8.55 159

no extract (binary) –4.56 216 –12.22 169

coded for one_hot

structure –3.86 221 –12.23 194

flatten –4.35 341 < 2 –9.84 258 < 2

flatten & structure –4.38 239 –11.93 193

prep4

16 states, 40 transitions, 8 inputs, 8 outputs

coded for extract

binary –7.33 298 –15.50 195

one_hot –4.34 348 –10.96 255

auto_4 –6.42 283 < 7 –13.16 190 < 7

auto_5 –6.58 285 –14.63 184

auto_6 –8.30 279 –12.81 191

no extract (binary) –8.87 299 –17.03 204

coded for one_hot

structure –5.27 335 –10.30 259

flatten –5.90 475 < 5 –13.79 370 < 5

flatten & structure –5.04 342 –10.94 260

State Machine Design Techniques for Verilog and VHDL

17Synopsys Journal of High-Level Design September 1994�

����
�� 	�� �

��� ��������
�� 	�� ���
��� �����

Run Time
(minutes)Area

Slack
(ns)

Run Time
(minutes)Area

Slack
(ns)

sm40

40 states, 80 transitions, 63 inputs, 61 outputs

coded for extract

binary –5.19 931 100 –21.04 661 81

one_hot –2.82 912 27 –16.48 737 21

auto_6 –5.39 885 87 –18.60 668 61

auto_7 –5.71 979 76 –29.54 683 51

auto_8 –5.63 933 69 –18.37 682 51

no extract (binary) –7.72 889 35 –31.73 604 6

coded for one_hot

structure –4.78 882 12 –16.59 761 7

flatten –7.38 3026 202 –49.68 2141 73

flatten & structure –4.41 905 28 –16.86 753 22

sm70

69 states, 116 transitions, 27 inputs, 16 outputs

coded for extract

binary –7.98 1030 17 –17.66 857 5

one_hot –3.12 1200 10 –8.28 1121 5

auto_7 –5.51 996 15 –14.67 849 6

auto_8 –5.69 975 13 –11.33 817 6

auto_9 –4.55 1018 19 –11.84 827 5

State Machine Design Techniques for Verilog and VHDL

18 Synopsys Journal of High-Level Design September 1994�

����
�� 	�� �

��� ��������
�� 	�� ���
��� �����

Run Time
(minutes)Area

Slack
(ns)

Run Time
(minutes)Area

Slack
(ns)

sm70 (continued)

69 states, 116 transitions, 27 inputs, 16 outputs

no extract (binary) –20.70 1249 49 –60.43 843 8

coded for one_hot

structure –7.92 1339 20 –35.77 1096 12

flatten –6.51 1852 36 –26.20 1548 23

flatten & structure –7.39 1326 29 –33.96 1104 18

Two Verilog versions of each machine were created: one highly encoded for use with
extract , and the other one-hot encoded as described in this paper in the One-Hot
Machine section under Coding State Transitions.

The highly encoded version was extract ed and compiled with a variety of state
encodings: binary, one_hot, and auto with varying bit widths. In addition, the highly
encoded version was compiled without using extract (thus using the binary encoding
specified in the source).

The one-hot version was compiled using a selection of structuring and flattening op-
tions.

The Verilog listings for the prep3 and prep4 examples are given in the Appendix.
Also listed are VHDL versions of the prep4 machine. These sources were also com-
piled, and the results were similar to the Verilog runs shown in the table.

For the max speed runs the prep3 and prep4 examples had a 10-ns clock, while the
sm40 and sm70 examples used a 20-ns clock. The min area runs used a max area
constraint of 0. The target library was the Synopsys class.db library.

All runs used Synopsys Design Compiler version 3.0b-12954 running on a
SPARCstation 2� under SunOS 4.1.3.

State Machine Design Techniques for Verilog and VHDL

19Synopsys Journal of High-Level Design September 1994�

Hints, Tips, Tricks, and Mysteries
� group –fsm sometimes gives you a broken state machine. This doesn’t happen

if you code the FSM all alone in its module.

� reduce_fsm sometimes takes a long time, much longer than the extract it-
self.

� For Verilog users of extract , you have to define the enum code parameters

before declaring the reg that uses it, and also before the state_vector decla-
ration. In the reg declaration, enum code must be between reg and the name:

 reg [2:0] // synopsys enum code
 state, next_state ;

or

 reg [2:0] /*synopsys enum code*/ state;

� A set_false_path from the asynchronous reset port of an extracted FSM will
prevent the state flip-flops from being mapped during compile. Apparently an
implicit dont_touch is placed on the flip-flops. This is no doubt a bug.

� When using auto state encoding, only the unencoded states are given new values.
If you want to replace all current encodings then do this:

 set_fsm_encoding {}
 set_fsm_encoding_style auto

� When using extract with auto encoding, only the minimum number of state
flip-flops are used. If you have specified a larger number, you may get a warning
about “truncating state vector.” Do a report_fsm to be sure.

� The encoding picked by extract does not depend on the applied constraints.

� Coding the same machine in Verilog and VHDL and using extract gives iden-
tical state tables, but the compile results are slightly different.

� If your HDL source specifies an output as don’t care, this will not be reflected in
the state table, because prior to the extract you have to map into gates and that
collapses the don’t care.

� Always do an ungroup before extract .

� set_fsm_encoding can’t handle more than 31 bits if you are using the ^H for-
mat. Instead use ^B, which works fine.

� Remove any unused inputs from your module before doing an extract . Other-
wise they will be included in the state table and it slows down the compile.

State Machine Design Techniques for Verilog and VHDL

20 Synopsys Journal of High-Level Design September 1994�

� Verilog users should infer flip-flops using non-blocking assignments with non-
zero intra-assignment delays:

 always @ (posedge clk)
 myout <= #1 next_myout ;

This is not necessary for Synopsys but should make your flip-flops simulate cor-
rectly in all Verilog simulators (e.g. Verilog-XL and VCS).

When specifying the state flip-flop reset behavior in a one-hot machine (see List-
ing 2 and Listing 4) there are two assignments made to the state vector: the first
clears all state bits to zero, and the second sets one particular state bit to one (in-
dicating the reset state). The second assignment partly overrides the first assign-
ment, so these two assignments must be executed in that order, and therefore
must have different delay values:

 // build the state flip-flops
 always @ (posedge clk or negedge rst)
 begin
 if (!rst) begin
 state <= #1 8’b0 ;
 state[START] <= #2 1’b1 ;
 end
 else
 state <= #1 next_state ;
 end

� Avoid using synchronous resets; it will probably add many additional transitions
to your machine. For example, the sm40 machine adds 26 transitions for a total
of 106, and the sm70 machine adds 60 for a total of 176.

If you must use synchronous resets, then they should be implemented as part of
the flip-flop inference and not in the state machine description itself. Here is a
Verilog example modified from Listing 3:

 // build the state flip-flops
 always @ (posedge clk)
 begin
 if (!rst)
 state <= #1 S0 ;
 else
 state <= #1 next_state ;
 end

and a VHDL example modified from Listing 5:

 -- build the state flip-flops
 process (clk)
 begin

State Machine Design Techniques for Verilog and VHDL

21Synopsys Journal of High-Level Design September 1994�

 if clk=’1’ and clk’event then
 if rst=’0’ then
 state <= S0 ;
 else
 state <= next_state ;
 end if ;
 end if ;
 end process ;

� When using extract with auto encoding, only the minimum number of state
flip-flops are used. Nevertheless, specifying more than the minimum will affect
the state assignment and thus the compile results.

� Why is extract better at flattening a design than compile using
set_flatten ?

Acknowledgments
Thanks to my clients for providing access to design tools and for allowing the use of
examples sm40 and sm70. Thanks to John F. Wakerly for finding the Huffman refer-
ences.

References
1. James R. Story, Harold J. Harrison, Erwin A. Reinhard, “Optimum State Assign-
ment for Synchronous Sequential Circuits,” IEEE Trans. Computers, vol. C-21, no.
12, pp. 1365-1373, December 1972.

2. Giovanni De Micheli, Robert K. Brayton, Alberto Sangiovanni-Vincentelli, “Op-
timal State Assignment for Finite State Machines,” IEEE Trans. Computer-Aided
Design, vol. CAD-4, no. 3, pp. 269-285, July 1985.

3. Pranav Ashar, Srinivas Devadas, A. Richard Newton, Sequential Logic Synthesis,
Kluwer Academic Publishers, 1992.

4. D. A. Huffman, “The Synthesis of Sequential Switching Circuits,” J. Franklin
Institute, vol. 257, no. 3, pp. 161-190, March 1954.

5. D. A. Huffman, “The Synthesis of Sequential Switching Circuits,” J. Franklin
Institute, vol. 257, no. 4, pp. 275-303, April 1954.

6. Jean-Michel Bergé, Alain Fonkoua, Serge Maginot, Jacques Rouillard, VHDL
’92, Kluwer Academic Publishers, 1993.

7. Synopsys, Finite State Machines Application Note, Version 3.0, February 1993.

8. Synopsys, Flattening and Structuring: A Look at Optimization Strategies Ap-
plication Note, Version 3.0, February 1993.

State Machine Design Techniques for Verilog and VHDL

22 Synopsys Journal of High-Level Design September 1994�

9. Programmable Electronics Performance Corporation, Benchmark Suite #1, Ver-
sion 1.2, March 28, 1993.

Related Reading
Steve Golson, “One-hot state machine design for FPGAs,” Proc. 3rd Annual PLD
Design Conference & Exhibit, p. 1.1.3.B, March 1993.

John F. Wakerly, Digital Design: Principles and Practices, Prentice-Hall, 1990.

State Machine Design Techniques for Verilog and VHDL

23Synopsys Journal of High-Level Design September 1994�

Appendix
The following example state machines are taken from the PREP benchmark suite
(Ref. 9).

prep3

prep3 is a Mealy machine with eight states and 12 transitions. It has eight inputs and
eight registered outputs. The state diagram is shown in Figure 3.

Listing 1 is a Verilog implementation for use with Synopsys FSM extract .

Listing 2 is a Verilog implementation that is one-hot coded.

��� 	 ��

��� 	 ��

��� 	 ��

��� 	 ��

��� 	 �

��� 	 ��

��� 	 ��

��� 	 ����� 	 ��

��� 	

��� 	 ��

��� 	

��� 	 ��

��� 	 ��

��� 	 ��

��� 	 �� � �

��� 	 ��

��
��

�

��

�

��

��

��

��

����	���

�����

����	���

Figure 3. prep 3 State Transition Diagram

State Machine Design Techniques for Verilog and VHDL

24 Synopsys Journal of High-Level Design September 1994�

Listing 1—prep3.v
/*
** prep3.v
**
** prep benchmark 3 -- small state machine
** benchmark suite #1 -- version 1.2 -- March 28, 1993
** Programmable Electronics Performance Corporation
**
** binary state assignment -- highly encoded
*/

module prep3 (clk, rst, in, out) ;

input clk, rst ;
input [7:0] in ;
output [7:0] out ;

parameter [2:0] // synopsys enum code
 START = 3’d0 ,
 SA = 3’d1 ,
 SB = 3’d2 ,
 SC = 3’d3 ,
 SD = 3’d4 ,
 SE = 3’d5 ,
 SF = 3’d6 ,
 SG = 3’d7 ;

// synopsys state_vector state
reg [2:0] // synopsys enum code
 state, next_state ;
reg [7:0] out, next_out ;

always @ (in or state) begin

 // default values

 next_state = START ;
 next_out = 8’bx ;

 // state machine

 case (state) // synopsys parallel_case full_case

 START:
 if (in == 8’h3c) begin
 next_state = SA ;
 next_out = 8’h82 ;
 end
 else begin

State Machine Design Techniques for Verilog and VHDL

25Synopsys Journal of High-Level Design September 1994�

 next_state = START ;
 next_out = 8’h00 ;
 end

 SA:
 case (in) // synopsys parallel_case full_case
 8’h2a:
 begin
 next_state = SC ;
 next_out = 8’h40 ;
 end
 8’h1f:
 begin
 next_state = SB ;
 next_out = 8’h20 ;
 end
 default:
 begin
 next_state = SA ;
 next_out = 8’h04 ;
 end
 endcase

 SB:
 if (in == 8’haa) begin
 next_state = SE ;
 next_out = 8’h11 ;
 end
 else begin
 next_state = SF ;
 next_out = 8’h30 ;
 end

 SC:
 begin
 next_state = SD ;
 next_out = 8’h08 ;
 end

 SD:
 begin
 next_state = SG ;
 next_out = 8’h80 ;
 end

 SE:
 begin
 next_state = START ;
 next_out = 8’h40 ;

State Machine Design Techniques for Verilog and VHDL

26 Synopsys Journal of High-Level Design September 1994�

 end

 SF:
 begin
 next_state = SG ;
 next_out = 8’h02 ;
 end

 SG:
 begin
 next_state = START ;
 next_out = 8’h01 ;
 end

 endcase

 end

// build the state flip-flops
always @ (posedge clk or negedge rst)
 begin
 if (!rst) state <= #1 START ;
 else state <= #1 next_state ;
 end

// build the output flip-flops
always @ (posedge clk or negedge rst)
 begin
 if (!rst) out <= #1 8’b0 ;
 else out <= #1 next_out ;
 end

endmodule

Listing 2—prep3_onehot.v
/*
** prep3_onehot.v
**
** prep benchmark 3 -- small state machine
** benchmark suite #1 -- version 1.2 -- March 28, 1993
** Programmable Electronics Performance Corporation
**
** one-hot state assignment
*/

module prep3 (clk, rst, in, out) ;

input clk, rst ;
input [7:0] in ;
output [7:0] out ;

State Machine Design Techniques for Verilog and VHDL

27Synopsys Journal of High-Level Design September 1994�

parameter [2:0]
 START = 0 ,
 SA = 1 ,
 SB = 2 ,
 SC = 3 ,
 SD = 4 ,
 SE = 5 ,
 SF = 6 ,
 SG = 7 ;

reg [7:0] state, next_state ;
reg [7:0] out, next_out ;

always @ (in or state) begin

 // default values

 next_state = 8’b0 ;
 next_out = 8’bx ;

 case (1’b1) // synopsys parallel_case full_case

 state[START]:
 if (in == 8’h3c) begin
 next_state[SA] = 1’b1 ;
 next_out = 8’h82 ;
 end
 else begin
 next_state[START] = 1’b1 ;
 next_out = 8’h00 ;
 end

 state[SA]:
 case (in) // synopsys parallel_case full_case
 8’h2a:
 begin
 next_state[SC] = 1’b1 ;
 next_out = 8’h40 ;
 end
 8’h1f:
 begin
 next_state[SB] = 1’b1 ;
 next_out = 8’h20 ;
 end
 default:
 begin
 next_state[SA] = 1’b1 ;
 next_out = 8’h04 ;

State Machine Design Techniques for Verilog and VHDL

28 Synopsys Journal of High-Level Design September 1994�

 end
 endcase

 state[SB]:
 if (in == 8’haa) begin
 next_state[SE] = 1’b1 ;
 next_out = 8’h11 ;
 end
 else begin
 next_state[SF] = 1’b1 ;
 next_out = 8’h30 ;
 end

 state[SC]:
 begin
 next_state[SD] = 1’b1 ;
 next_out = 8’h08 ;
 end

 state[SD]:
 begin
 next_state[SG] = 1’b1 ;
 next_out = 8’h80 ;
 end

 state[SE]:
 begin
 next_state[START] = 1’b1 ;
 next_out = 8’h40 ;
 end

 state[SF]:
 begin
 next_state[SG] = 1’b1 ;
 next_out = 8’h02 ;
 end

 state[SG]:
 begin
 next_state[START] = 1’b1 ;
 next_out = 8’h01 ;
 end

 endcase

 end

// build the state flip-flops
always @ (posedge clk or negedge rst)

State Machine Design Techniques for Verilog and VHDL

29Synopsys Journal of High-Level Design September 1994�

 begin
 if (!rst) begin
 state <= #1 8’b0 ;
 state[START] <= #2 1’b1 ;
 end
 else
 state <= #1 next_state ;
 end

// build the output flip-flops
always @ (posedge clk or negedge rst)
 begin
 if (!rst) out <= #1 8’b0 ;
 else out <= #1 next_out ;
 end

endmodule

prep4

prep4 is a Moore machine with sixteen states and 40 transitions. It has eight inputs
and eight unregistered outputs. The state diagram is shown in Figure 4.

Listing 3 is a Verilog implementation for use with Synopsys FSM extract .

Listing 4 is a Verilog implementation that is one-hot coded.

Listing 5 is a VHDL implementation for use with Synopsys FSM extract .

Listing 6 is a VHDL implementation that is one-hot coded.

State Machine Design Techniques for Verilog and VHDL

30 Synopsys Journal of High-Level Design September 1994�

�

� � 	

�

��

�

�

��

��

�

�	

��

�

�������

	���������

	�������	�

�����	

�������

��������

�����

�����

���������

������

������

������

�����

�����	

�����������

������

�����������

�����

��� � ���

��� � �� � �
�

��� � ��
��
������� � �

�� � �

��
������� � �

������
�� �

�� ���

�� � � � �� � �

�� � �

�
������

��� � ��

�������	������

��������	�������

� � �� � ��

� � �� � ��

� � �� � ��

������

Figure 4. prep4 State Transition Diagram

State Machine Design Techniques for Verilog and VHDL

31Synopsys Journal of High-Level Design September 1994�

Listing 3—prep4.v
/*
** prep4.v
**
** prep benchmark 4 -- large state machine
** benchmark suite #1 -- version 1.2 -- March 28, 1993
** Programmable Electronics Performance Corporation
**
** binary state assignment -- highly encoded
*/

module prep4 (clk, rst, in, out) ;

input clk, rst ;
input [7:0] in ;
output [7:0] out ;

parameter [3:0] // synopsys enum code
 S0 = 4’d0 , S1 = 4’d1 , S2 = 4’d2 , S3 = 4’d3 ,
 S4 = 4’d4 , S5 = 4’d5 , S6 = 4’d6 , S7 = 4’d7 ,
 S8 = 4’d8 , S9 = 4’d9 , S10 = 4’d10 , S11 = 4’d11 ,
 S12 = 4’d12 , S13 = 4’d13 , S14 = 4’d14 , S15 = 4’d15 ;

// synopsys state_vector state
reg [3:0] /* synopsys enum code */ state, next_state ;
reg [7:0] out ;

// state machine

always @ (in or state) begin

 // default value
 next_state = S0 ; // always overridden

 case (state) // synopsys parallel_case full_case

 S0: case(1’b1) // synopsys parallel_case full_case
 (in == 8’d0): next_state = S0 ;
 (8’d0 < in && in < 8’d4): next_state = S1 ;
 (8’d3 < in && in < 8’d32): next_state = S2 ;
 (8’d31 < in && in < 8’d64): next_state = S3 ;
 (in > 8’d63): next_state = S4 ;
 endcase

 S1: if (in[0] && in[1]) next_state = S0 ;
 else next_state = S3 ;

 S2: next_state = S3 ;

State Machine Design Techniques for Verilog and VHDL

32 Synopsys Journal of High-Level Design September 1994�

 S3: next_state = S5 ;

 S4: if (in[0] || in[2] || in[4]) next_state = S5 ;
 else next_state = S6 ;

 S5: if (in[0] == 1’b0) next_state = S5 ;
 else next_state = S7 ;

 S6: case(in[7:6]) // synopsys parallel_case full_case
 2’b11: next_state = S1 ;
 2’b00: next_state = S6 ;
 2’b01: next_state = S8 ;
 2’b10: next_state = S9 ;
 endcase

 S7: case(in[7:6]) // synopsys parallel_case full_case
 2’b00: next_state = S3 ;
 2’b11: next_state = S4 ;
 2’b10,
 2’b01: next_state = S7 ;
 endcase

 S8: if(in[4] ^ in[5]) next_state = S11 ;
 else if (in[7]) next_state = S1 ;
 else next_state = S8 ;

 S9: if (in[0] == 1’b0) next_state = S9 ;
 else next_state = S11 ;

 S10: next_state = S1 ;

 S11: if (in == 8’d64) next_state = S15 ;
 else next_state = S8 ;

 S12: if (in == 8’d255) next_state = S0 ;
 else next_state = S12 ;

 S13: if (in[1] ^ in[3] ^ in[5]) next_state = S12 ;
 else next_state = S14 ;

 S14: case(1’b1) // synopsys parallel_case full_case
 (in == 8’d0): next_state = S14 ;
 (8’d0 < in && in < 8’d64): next_state = S12 ;
 (in > 8’d63): next_state = S10 ;
 endcase

 S15: if (in[7] == 1’b0) next_state = S15 ;
 else
 case (in[1:0])

State Machine Design Techniques for Verilog and VHDL

33Synopsys Journal of High-Level Design September 1994�

 // synopsys parallel_case full_case
 2’b11: next_state = S0 ;
 2’b01: next_state = S10 ;
 2’b10: next_state = S13 ;
 2’b00: next_state = S14 ;
 endcase
 endcase
 end

// outputs

always @ (state) begin

 // default value
 out = 8’bx ;

 case (state) // synopsys parallel_case full_case
 S0: out = 8’b00000000 ;
 S1: out = 8’b00000110 ;
 S2: out = 8’b00011000 ;
 S3: out = 8’b01100000 ;
 S4: begin
 out[7] = 1’b1 ; out[0] = 1’b0 ;
 end
 S5: begin
 out[6] = 1’b1 ; out[1] = 1’b0 ;
 end
 S6: out = 8’b00011111 ;
 S7: out = 8’b00111111 ;
 S8: out = 8’b01111111 ;
 S9: out = 8’b11111111 ;
 S10: begin
 out[6] = 1’b1 ; out[4] = 1’b1 ;
 out[2] = 1’b1 ; out[0] = 1’b1 ;
 end
 S11: begin
 out[7] = 1’b1 ; out[5] = 1’b1 ;
 out[3] = 1’b1 ; out[1] = 1’b1 ;
 end
 S12: out = 8’b11111101 ;
 S13: out = 8’b11110111 ;
 S14: out = 8’b11011111 ;
 S15: out = 8’b01111111 ;
 endcase
 end

// build the state flip-flops
always @ (posedge clk or negedge rst)
 begin

State Machine Design Techniques for Verilog and VHDL

34 Synopsys Journal of High-Level Design September 1994�

 if (!rst) state <= #1 S0 ;
 else state <= #1 next_state ;
 end

endmodule

Listing 4—prep4_onehot.v
/*
** prep4_onehot.v
**
** prep benchmark 4 -- large state machine
** benchmark suite #1 -- version 1.2 -- March 28, 1993
** Programmable Electronics Performance Corporation
**
** one-hot state assignment
*/

module prep4 (clk, rst, in, out) ;

input clk, rst ;
input [7:0] in ;
output [7:0] out ;

parameter [3:0]
 S0 = 4’d0 , S1 = 4’d1 , S2 = 4’d2 , S3 = 4’d3 ,
 S4 = 4’d4 , S5 = 4’d5 , S6 = 4’d6 , S7 = 4’d7 ,
 S8 = 4’d8 , S9 = 4’d9 , S10 = 4’d10 , S11 = 4’d11 ,
 S12 = 4’d12 , S13 = 4’d13 , S14 = 4’d14 , S15 = 4’d15 ;

reg [15:0] state, next_state ;
reg [7:0] out ;

// state machine

always @ (in or state) begin

 // default value
 next_state = 16’b0 ; // only one bit overridden

 case (1’b1) // synopsys parallel_case full_case

 state[S0]:
 case(1’b1) // synopsys parallel_case full_case
 (in == 8’d0): next_state[S0] = 1’b1 ;
 (8’d0 < in && in < 8’d4): next_state[S1] = 1’b1 ;
 (8’d3 < in && in < 8’d32): next_state[S2] = 1’b1 ;
 (8’d31 < in && in < 8’d64): next_state[S3] = 1’b1 ;
 (in > 8’d63): next_state[S4] = 1’b1 ;
 endcase

State Machine Design Techniques for Verilog and VHDL

35Synopsys Journal of High-Level Design September 1994�

 state[S1]: if (in[0] && in[1]) next_state[S0] = 1’b1 ;
 else next_state[S3] = 1’b1 ;
 state[S2]: next_state[S3] = 1’b1 ;

 state[S3]: next_state[S5] = 1’b1 ;

 state[S4]:
 if (in[0] || in[2] || in[4]) next_state[S5] = 1’b1 ;
 else next_state[S6] = 1’b1 ;

 state[S5]: if (in[0] == 1’b0) next_state[S5] = 1’b1 ;
 else next_state[S7] = 1’b1 ;
 state[S6]:
 case(in[7:6]) // synopsys parallel_case full_case
 2’b11: next_state[S1] = 1’b1 ;
 2’b00: next_state[S6] = 1’b1 ;
 2’b01: next_state[S8] = 1’b1 ;
 2’b10: next_state[S9] = 1’b1 ;
 endcase

 state[S7]:
 case(in[7:6]) // synopsys parallel_case full_case
 2’b00: next_state[S3] = 1’b1 ;
 2’b11: next_state[S4] = 1’b1 ;
 2’b10,
 2’b01: next_state[S7] = 1’b1 ;
 endcase

 state[S8]: if(in[4] ^ in[5]) next_state[S11] = 1’b1 ;
 else if (in[7]) next_state[S1] = 1’b1 ;
 else next_state[S8] = 1’b1 ;

 state[S9]: if (in[0] == 1’b0) next_state[S9] = 1’b1 ;
 else next_state[S11] = 1’b1 ;

 state[S10]: next_state[S1] = 1’b1 ;

 state[S11]: if (in == 8’d64) next_state[S15] = 1’b1 ;
 else next_state[S8] = 1’b1 ;

 state[S12]: if (in == 8’d255) next_state[S0] = 1’b1 ;
 else next_state[S12] = 1’b1 ;

 state[S13]:
 if (in[1] ^ in[3] ^ in[5]) next_state[S12] = 1’b1 ;
 else next_state[S14] = 1’b1 ;

 state[S14]:
 case(1’b1) // synopsys parallel_case full_case

State Machine Design Techniques for Verilog and VHDL

36 Synopsys Journal of High-Level Design September 1994�

 (in == 8’d0): next_state[S14] = 1’b1 ;
 (8’d0 < in && in < 8’d64): next_state[S12] = 1’b1 ;
 (in > 8’d63): next_state[S10] = 1’b1 ;
 endcase

 state[S15]:
 if (in[7] == 1’b0) next_state[S15] = 1’b1 ;
 else
 case (in[1:0]) // synopsys parallel_case full_case
 2’b11: next_state[S0] = 1’b1 ;
 2’b01: next_state[S10] = 1’b1 ;
 2’b10: next_state[S13] = 1’b1 ;
 2’b00: next_state[S14] = 1’b1 ;
 endcase
 endcase
 end

// outputs

always @ (state) begin

 // default value
 out = 8’bx ;

 case (1’b1) // synopsys parallel_case full_case
 state[S0]: out = 8’b00000000 ;
 state[S1]: out = 8’b00000110 ;
 state[S2]: out = 8’b00011000 ;
 state[S3]: out = 8’b01100000 ;
 state[S4]: begin
 out[7] = 1’b1 ; out[0] = 1’b0 ;
 end
 state[S5]: begin
 out[6] = 1’b1 ; out[1] = 1’b0 ;
 end
 state[S6]: out = 8’b00011111 ;
 state[S7]: out = 8’b00111111 ;
 state[S8]: out = 8’b01111111 ;
 state[S9]: out = 8’b11111111 ;
 state[S10]: begin
 out[6] = 1’b1 ; out[4] = 1’b1 ;
 out[2] = 1’b1 ; out[0] = 1’b1 ;
 end
 state[S11]: begin
 out[7] = 1’b1 ; out[5] = 1’b1 ;
 out[3] = 1’b1 ; out[1] = 1’b1 ;
 end
 state[S12]: out = 8’b11111101 ;
 state[S13]: out = 8’b11110111 ;

State Machine Design Techniques for Verilog and VHDL

37Synopsys Journal of High-Level Design September 1994�

 state[S14]: out = 8’b11011111 ;
 state[S15]: out = 8’b01111111 ;
 endcase
 end

// build the state flip-flops
always @ (posedge clk or negedge rst)
 begin
 if (!rst) begin
 state <= #1 16’b0 ;
 state[S0] <= #2 1’b1 ;
 end
 else state <= #1 next_state ;
 end

endmodule

Listing 5—prep4.vhd
-- prep4.vhd
--
-- prep benchmark 4 -- large state machine
-- benchmark suite #1 -- version 1.2 -- March 28, 1993
-- Programmable Electronics Performance Corporation
--
-- binary state assignment, highly encoded

library IEEE ;
use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;

package typedef is
 subtype byte is std_logic_vector (7 downto 0) ;
 subtype bytein is bit_vector (7 downto 0) ;
end typedef ;

library IEEE ;
use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use work.typedef.all ;

entity prep4 is
 port (clk,rst : in std_logic ;
 I : in byte ;
 O : out byte) ;
end prep4 ;

architecture behavior of prep4 is
 type state_type is (S0, S1, S2, S3,
 S4, S5, S6, S7, S8, S9, S10, S11,
 S12, S13, S14, S15) ;

State Machine Design Techniques for Verilog and VHDL

38 Synopsys Journal of High-Level Design September 1994�

 signal state, next_state : state_type ;
 attribute state_vector : string ;
 attribute state_vector of behavior :
 architecture is ”state” ;
 signal Iin : bytein ;
begin

 process (I)
 begin
 Iin <= to_bitvector(I);
 end process ;

 -- state machine

 process (Iin, state)
 begin
 -- default value
 next_state <= S0 ;

 case state is

 when S0 =>
 if (Iin = X”00”) then
 next_state <= S0;
 end if ;
 if (x”00” < Iin) and (Iin < x”04”) then
 next_state <= S1;
 end if;
 if (x”03” < Iin) and (Iin < x”20”) then
 next_state <= S2;
 end if;
 if (x”1f” < Iin) and (Iin < x”40”) then
 next_state <= S3;
 end if;
 if (x”3f” < Iin) then
 next_state <= S4;
 end if;

 when S1 =>
 if (Iin(1) and Iin(0)) = ’1’ then
 next_state <= S0;
 else
 next_state <= S3;
 end if ;

 when S2 =>
 next_state <= S3 ;

 when S3 =>

State Machine Design Techniques for Verilog and VHDL

39Synopsys Journal of High-Level Design September 1994�

 next_state <= S5 ;

 when S4 =>
 if (Iin(0) or Iin(2) or Iin(4)) = ’1’ then
 next_state <= S5 ;
 else
 next_state <= S6 ;
 end if ;

 when S5 =>
 if (Iin(0) = ’0’) then
 next_state <= S5 ;
 else
 next_state <= S7 ;
 end if ;

 when S6 =>
 case Iin(7 downto 6) is
 when b”11” => next_state <= S1 ;
 when b”00” => next_state <= S6 ;
 when b”01” => next_state <= S8 ;
 when b”10” => next_state <= S9 ;
 end case ;

 when S7 =>
 case Iin(7 downto 6) is
 when b”00” => next_state <= S3 ;
 when b”11” => next_state <= S4 ;
 when b”01” => next_state <= S7 ;
 when b”10” => next_state <= S7 ;
 end case ;

 when S8 =>
 if (Iin(4) xor Iin(5)) = ’1’ then
 next_state <= S11 ;
 elsif Iin(7) = ’1’ then
 next_state <= S1 ;
 else
 next_state <= S8 ;
 end if;

 when S9 =>
 if (Iin(0) = ’1’) then
 next_state <= S11 ;
 else
 next_state <= S9 ;
 end if;

 when S10 =>

State Machine Design Techniques for Verilog and VHDL

40 Synopsys Journal of High-Level Design September 1994�

 next_state <= S1 ;

 when S11 =>
 if Iin = x”40” then
 next_state <= S15 ;
 else
 next_state <= S8 ;
 end if ;

 when S12 =>
 if Iin = x”ff” then
 next_state <= S0 ;
 else
 next_state <= S12 ;
 end if ;

 when S13 =>
 if (Iin(1) xor Iin(3) xor Iin(5)) = ’1’ then
 next_state <= S12 ;
 else
 next_state <= S14 ;
 end if ;

 when S14 =>
 if (Iin > x”3f”) then
 next_state <= S10 ;
 elsif (Iin = x”00”) then
 next_state <= S14 ;
 else
 next_state <= S12 ;
 end if ;

 when S15 =>
 if Iin(7) = ’0’ then
 next_state <= S15 ;
 else
 case Iin(1 downto 0) is
 when b”11” => next_state <= S0 ;
 when b”01” => next_state <= S10 ;
 when b”10” => next_state <= S13 ;
 when b”00” => next_state <= S14 ;
 end case ;
 end if ;
 end case ;
 end process;

 -- outputs

 process (state)

State Machine Design Techniques for Verilog and VHDL

41Synopsys Journal of High-Level Design September 1994�

 begin

 -- default value is don’t care
 O <= byte’(others => ’X’) ;

 case state is
 when S0 => O <= ”00000000” ;
 when S1 => O <= ”00000110” ;
 when S2 => O <= ”00011000” ;
 when S3 => O <= ”01100000” ;
 when S4 =>
 O(7) <= ’1’ ;
 O(0) <= ’0’ ;
 when S5 =>
 O(6) <= ’1’ ;
 O(1) <= ’0’ ;
 when S6 => O <= ”00011111” ;
 when S7 => O <= ”00111111” ;
 when S8 => O <= ”01111111” ;
 when S9 => O <= ”11111111” ;
 when S10 =>
 O(6) <=’1’ ;
 O(4) <=’1’ ;
 O(2) <=’1’ ;
 O(0) <=’1’ ;
 when S11 =>
 O(7) <=’1’ ;
 O(5) <=’1’ ;
 O(3) <=’1’ ;
 O(1) <=’1’ ;
 when S12 => O <= ”11111101” ;
 when S13 => O <= ”11110111” ;
 when S14 => O <= ”11011111” ;
 when S15 => O <= ”01111111” ;
 end case ;
 end process;

 -- build the state flip-flops
 process (clk, rst)
 begin
 if rst=’0’ then
 state <= S0 ;
 elsif clk=’1’ and clk’event then
 state <= next_state ;
 end if ;
 end process ;

end behavior ;

State Machine Design Techniques for Verilog and VHDL

42 Synopsys Journal of High-Level Design September 1994�

Listing 6—prep4_onehot.vhd
-- prep4_onehot.vhd
--
-- prep benchmark 4 -- large state machine
-- benchmark suite #1 -- version 1.2 -- March 28, 1993
-- Programmable Electronics Performance Corporation
--
-- one-hot state assignment

library IEEE ;
use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;

package typedef is
 subtype state_vec is std_logic_vector (0 to 15) ;
 subtype byte is std_logic_vector (7 downto 0) ;
 subtype bytein is bit_vector (7 downto 0) ;
end typedef ;

library IEEE ;
use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use work.typedef.all ;

entity prep4 is
 port (clk,rst : in std_logic ;
 I : in byte ;
 O : out byte) ;
end prep4 ;

architecture behavior of prep4 is
 signal state, next_state : state_vec ;
 signal Iin : bytein ;
begin
 process (I)
 begin
 Iin <= to_bitvector(I);
 end process ;

 -- state machine

 process (Iin, state)
 begin
 -- default value
 next_state <= state_vec’(others => ’0’) ;

 if state(0) = ’1’ then
 if (Iin = X”00”) then
 next_state(0) <= ’1’; end if ;

State Machine Design Techniques for Verilog and VHDL

43Synopsys Journal of High-Level Design September 1994�

 if (x”00” < Iin) and (Iin < x”04”) then
 next_state(1) <= ’1’; end if;
 if (x”03” < Iin) and (Iin < x”20”) then
 next_state(2) <= ’1’; end if;
 if (x”1f” < Iin) and (Iin < x”40”) then
 next_state(3) <= ’1’; end if;
 if (x”3f” < Iin) then
 next_state(4) <= ’1’; end if;
 end if;

 if state(1) = ’1’ then
 if (Iin(1) and Iin(0)) = ’1’ then
 next_state(0) <= ’1’;
 else
 next_state(3) <= ’1’; end if ;
 end if ;

 if state(2) = ’1’ then
 next_state(3) <= ’1’ ;
 end if;

 if state(3) = ’1’ then
 next_state(5) <= ’1’ ;
 end if;

 if state(4) = ’1’ then
 if (Iin(0) or Iin(2) or Iin(4)) = ’1’ then
 next_state(5) <= ’1’ ;
 else
 next_state(6) <= ’1’ ; end if ;
 end if;

 if state(5) = ’1’ then
 if (Iin(0) = ’0’) then
 next_state(5) <= ’1’ ;
 else
 next_state(7) <= ’1’ ; end if ;
 end if;

 if state(6) = ’1’ then
 case Iin(7 downto 6) is
 when b”11” => next_state(1) <= ’1’ ;
 when b”00” => next_state(6) <= ’1’ ;
 when b”01” => next_state(8) <= ’1’ ;
 when b”10” => next_state(9) <= ’1’ ;
 end case ;
 end if;

 if state(7) = ’1’ then

State Machine Design Techniques for Verilog and VHDL

44 Synopsys Journal of High-Level Design September 1994�

 case Iin(7 downto 6) is
 when b”00” => next_state(3) <= ’1’ ;
 when b”11” => next_state(4) <= ’1’ ;
 when b”01” => next_state(7) <= ’1’ ;
 when b”10” => next_state(7) <= ’1’ ;
 end case ;
 end if;

 if state(8) = ’1’ then
 if (Iin(4) xor Iin(5)) = ’1’ then
 next_state(11) <= ’1’ ;
 elsif Iin(7) = ’1’ then
 next_state(1) <= ’1’ ;
 else
 next_state(8) <= ’1’ ; end if;
 end if;

 if state(9) = ’1’ then
 if (Iin(0) = ’1’) then
 next_state(11) <= ’1’ ;
 else
 next_state(9) <= ’1’ ; end if;
 end if;

 if state(10) = ’1’ then
 next_state(1) <= ’1’ ;
 end if ;

 if state(11) = ’1’ then
 if Iin = x”40” then
 next_state(15) <= ’1’ ;
 else
 next_state(8) <= ’1’ ; end if ;
 end if ;

 if state(12) = ’1’ then
 if Iin = x”ff” then
 next_state(0) <= ’1’ ;
 else
 next_state(12) <= ’1’ ; end if ;
 end if ;

 if state(13) = ’1’ then
 if (Iin(1) xor Iin(3) xor Iin(5)) = ’1’ then
 next_state(12) <= ’1’ ;
 else
 next_state(14) <= ’1’ ; end if ;
 end if ;

State Machine Design Techniques for Verilog and VHDL

45Synopsys Journal of High-Level Design September 1994�

 if state(14) = ’1’ then
 if (Iin > x”3f”) then
 next_state(10) <= ’1’ ;
 elsif (Iin = x”00”) then
 next_state(14) <= ’1’ ;
 else
 next_state(12) <= ’1’ ; end if ;
 end if ;

 if state(15) = ’1’ then
 if Iin(7) = ’0’ then
 next_state(15) <= ’1’ ;
 else
 case Iin(1 downto 0) is
 when b”11” => next_state(0) <= ’1’ ;
 when b”01” => next_state(10) <= ’1’ ;
 when b”10” => next_state(13) <= ’1’ ;
 when b”00” => next_state(14) <= ’1’ ;
 end case ;
 end if ;
 end if ;
 end process;

 -- outputs

 process (state)
 begin

 -- default value is don’t care
 O <= byte’(others => ’X’) ;

 if state(0) = ’1’ then O <= ”00000000” ; end if ;
 if state(1) = ’1’ then O <= ”00000110” ; end if ;
 if state(2) = ’1’ then O <= ”00011000” ; end if ;
 if state(3) = ’1’ then O <= ”01100000” ; end if ;
 if state(4) = ’1’ then
 O(7) <= ’1’ ;
 O(0) <= ’0’ ;
 end if ;
 if state(5) = ’1’ then
 O(6) <= ’1’ ;
 O(1) <= ’0’ ;
 end if ;
 if state(6) = ’1’ then O <= ”00011111” ; end if ;
 if state(7) = ’1’ then O <= ”00111111” ; end if ;
 if state(8) = ’1’ then O <= ”01111111” ; end if ;
 if state(9) = ’1’ then O <= ”11111111” ; end if ;
 if state(10) = ’1’ then
 O(6) <=’1’ ;

State Machine Design Techniques for Verilog and VHDL

46 Synopsys Journal of High-Level Design September 1994�

 O(4) <=’1’ ;
 O(2) <=’1’ ;
 O(0) <=’1’ ;
 end if ;
 if state(11) = ’1’ then
 O(7) <=’1’ ;
 O(5) <=’1’ ;
 O(3) <=’1’ ;
 O(1) <=’1’ ;
 end if ;
 if state(12) = ’1’ then O <= ”11111101” ; end if ;
 if state(13) = ’1’ then O <= ”11110111” ; end if ;
 if state(14) = ’1’ then O <= ”11011111” ; end if ;
 if state(15) = ’1’ then O <= ”01111111” ; end if ;

 end process;

 -- build the state flip-flops
 process (clk, rst)
 begin
 if rst=’0’ then
 state <= state_vec’(others => ’0’) ;
 state(0) <= ’1’ ;
 elsif clk=’1’ and clk’event then
 state <= next_state ;
 end if ;
 end process ;

end behavior ;

About the Author
Steve Golson has been an independent consultant for the past eight years. His areas
of expertise include VLSI design (full-custom, semi-custom, gate array, FPGA);
computer architecture, especially memory systems; and digital hardware design. Mr.
Golson also provides services in reverse engineering, in patent infringement analy-
sis, and as an expert witness.

Prior to striking out on his own, Mr. Golson worked for five years at General Com-
puter Company of Cambridge, Mass. While at GCC he designed several micropro-
cessor-controlled advanced graphics systems for real-time applications (video
games). He has a B.S. in Earth, Atmospheric, and Planetary Sciences from MIT.

You may contact the author at sgolson@trilobyte.com or (508) 369–9669.

State Machine Design Techniques for Verilog and VHDL

47Synopsys Journal of High-Level Design September 1994�

Synopsys Server Copyright
Copyright 1994 Synopsys, Inc. 700 East Middlefield Road, Mountain View, CA
94043–4033. All rights reserved.

Any person is hereby authorized to view, copy, print, and distribute these documents
subject to the following conditions:

1. This document may be used for informational purposes only.

2. Any copy of this document or portion thereof must include the copyright notice.

Restricted Rights Legend

Use, duplication, or disclosure by the United States Government is subject to the re-
strictions set forth in DFARS 252.227–7013 (c)(1)(ii) and FAR 52.227–19.

Trademarks

Synopsys and the Synopsys logo are trademarks or registered trademarks of Synop-
sys, Inc. All other product names and company logos mentioned herein are the trade-
marks of their respective owners.

Warranties

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON–INFRINGEMENT.

REFERENCES TO CORPORATIONS, THEIR SERVICES AND PRODUCTS,
ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED. IN NO EVENT SHALL SYNOPSYS, INC. BE LI-
ABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS INFORMATION.

Descriptions of, or references to, products or publications within the Synopsys In-
formation Server does not imply endorsement of that product or publication. Synop-
sys, Inc. makes no warranty of any kind with respect to the subject matter included
herein, the products listed herein, or the completeness or accuracy of this catalog.
Synopsys specifically disclaims all warranties, express, implied or otherwise, includ-

State Machine Design Techniques for Verilog and VHDL

48 Synopsys Journal of High-Level Design September 1994�

ing without limitation, all warranties of merchantability and fitness for a particular
purpose.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO
THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THE PUBLICATION. SYNOPSYS MAY MAKE IM-
PROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

